ترغب بنشر مسار تعليمي؟ اضغط هنا

Sharp Bounds for Genetic Drift in EDAs

60   0   0.0 ( 0 )
 نشر من قبل Weijie Zheng
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Estimation of Distribution Algorithms (EDAs) are one branch of Evolutionary Algorithms (EAs) in the broad sense that they evolve a probabilistic model instead of a population. Many existing algorithms fall into this category. Analogous to genetic drift in EAs, EDAs also encounter the phenomenon that updates of the probabilistic model not justified by the fitness move the sampling frequencies to the boundary values. This can result in a considerable performance loss. This paper proves the first sharp estimates of the boundary hitting time of the sampling frequency of a neutral bit for several univariate EDAs. For the UMDA that selects $mu$ best individuals from $lambda$ offspring each generation, we prove that the expected first iteration when the frequency of the neutral bit leaves the middle range $[tfrac 14, tfrac 34]$ and the expected first time it is absorbed in 0 or 1 are both $Theta(mu)$. The corresponding hitting times are $Theta(K^2)$ for the cGA with hypothetical population size $K$. This paper further proves that for PBIL with parameters $mu$, $lambda$, and $rho$, in an expected number of $Theta(mu/rho^2)$ iterations the sampling frequency of a neutral bit leaves the interval $[Theta(rho/mu),1-Theta(rho/mu)]$ and then always the same value is sampled for this bit, that is, the frequency approaches the corresponding boundary value with maximum speed. For the lower bounds implicit in these statements, we also show exponential tail bounds. If a bit is not neutral, but neutral or has a preference for ones, then the lower bounds on the times to reach a low frequency value still hold. An analogous statement holds for bits that are neutral or prefer the value zero.



قيم البحث

اقرأ أيضاً

One of the key difficulties in using estimation-of-distribution algorithms is choosing the population size(s) appropriately: Too small values lead to genetic drift, which can cause enormous difficulties. In the regime with no genetic drift, however, often the runtime is roughly proportional to the population size, which renders large population sizes inefficient. Based on a recent quantitative analysis which population sizes lead to genetic drift, we propose a parameter-less version of the compact genetic algorithm that automatically finds a suitable population size without spending too much time in situations unfavorable due to genetic drift. We prove a mathematical runtime guarantee for this algorithm and conduct an extensive experimental analysis on four classic benchmark problems both without and with additive centered Gaussian posterior noise. The former shows that under a natural assumption, our algorithm has a performance very similar to the one obtainable from the best problem-specific population size. The latter confirms that missing the right population size in the original cGA can be detrimental and that previous theory-based suggestions for the population size can be far away from the right values; it also shows that our algorithm as well as a previously proposed parameter-less variant of the cGA based on parallel runs avoid such pitfalls. Comparing the two parameter-less approaches, ours profits from its ability to abort runs which are likely to be stuck in a genetic drift situation.
We introduce the Genetic-Gated Networks (G2Ns), simple neural networks that combine a gate vector composed of binary genetic genes in the hidden layer(s) of networks. Our method can take both advantages of gradient-free optimization and gradient-base d optimization methods, of which the former is effective for problems with multiple local minima, while the latter can quickly find local minima. In addition, multiple chromosomes can define different models, making it easy to construct multiple models and can be effectively applied to problems that require multiple models. We show that this G2N can be applied to typical reinforcement learning algorithms to achieve a large improvement in sample efficiency and performance.
78 - Noe Casas 2015
In this article we provide a comprehensive review of the different evolutionary algorithm techniques used to address multimodal optimization problems, classifying them according to the nature of their approach. On the one hand there are algorithms th at address the issue of the early convergence to a local optimum by differentiating the individuals of the population into groups and limiting their interaction, hence having each group evolve with a high degree of independence. On the other hand other approaches are based on directly addressing the lack of genetic diversity of the population by introducing elements into the evolutionary dynamics that promote new niches of the genotypical space to be explored. Finally, we study multi-objective optimization genetic algorithms, that handle the situations where multiple criteria have to be satisfied with no penalty for any of them. Very rich literature has arised over the years on these topics, and we aim at offering an overview of the most important techniques of each branch of the field.
We prove $L^p$ lower bounds for Coulomb energy for radially symmetric functions in $dot H^s(R^3)$ with $frac 12 <s<frac{3}{2}$. In case $frac 12 <s leq 1$ we show that the lower bounds are sharp.
53 - W. B. Langdon 2020
C++ code snippets from a multi-core parallel memory-efficient crossover for genetic programming are given. They may be adapted for separate generation evolutionary algorithms where large chromosomes or small RAM require no more than M + (2 times nthreads) simultaneously active individuals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا