ﻻ يوجد ملخص باللغة العربية
According to Landau criterion, a phase transition should be first order when cubic terms of order parameters are allowed in its effective Ginzburg-Landau free energy. Recently, it was shown by renormalization group (RG) analysis that continuous transition can happen at putatively first-order $Z_3$ transitions in 2D Dirac semimetals and such non-Landau phase transitions were dubbed fermion-induced quantum critical points (FIQCP) [Li et al., Nature Communications 8, 314 (2017)]. The RG analysis, controlled by the 1/$N$ expansion with $N$ the number of flavors of four-component Dirac fermions, shows that FIQCP occurs for $Ngeq N_c$. Previous QMC simulations of a microscopic model of SU($N$) fermions on the honeycomb lattice showed that FIQCP occurs at the transition between Dirac semimetals and Kekule-VBS for $Ngeq 2$. However, precise value of the lower bound $N_c$ has not been established. Especially, the case of $N=1$ has not been explored by studying microscopic models so far. Here, by introducing a generalized SU($N$) fermion model with $N=1$ (namely spinless fermions on the honeycomb lattice), we perform large-scale sign-problem-free Majorana quantum Monte Carlo simulations and find convincing evidence of FIQCP for $N=1$. Consequently, our results suggest that FIQCP can occur in 2D Dirac semimetals for all positive integers $Ngeq 1$.
In this paper we discuss the N$acute{e}$el and Kekul$acute{e}$ valence bond solids quantum criticality in graphene Dirac semimetal. Considering the quartic four-fermion interaction $g(bar{psi}_iGamma_{ij}psi_j)^2$ that contains spin,valley, and subla
We explore the Matsubara quasiparticle fraction and the pseudogap of the two-dimensional Hubbard model with the dynamical cluster quantum Monte Carlo method. The character of the quasiparticle fraction changes from non-Fermi liquid, to marginal Fermi
Building on a recent investigation of the Shastry-Sutherland model [S. Wessel et al., Phys. Rev. B 98, 174432 (2018)], we develop a general strategy to eliminate the Monte Carlo sign problem near the zero temperature limit in frustrated quantum spin
We establish a scenario where fluctuations of new degrees of freedom at a quantum phase transition change the nature of a transition beyond the standard Landau-Ginzburg paradigm. To this end we study the quantum phase transition of gapless Dirac ferm
We report large scale determinant Quantum Monte Carlo calculations of the effective bandwidth, momentum distribution, and magnetic correlations of the square lattice fermion Hubbard Hamiltonian at half-filling. The sharp Fermi surface of the non-inte