ترغب بنشر مسار تعليمي؟ اضغط هنا

Fermion-induced quantum critical point in Dirac semimetals: a sign-problem-free quantum Monte Carlo study

89   0   0.0 ( 0 )
 نشر من قبل Bo-Hai Li
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

According to Landau criterion, a phase transition should be first order when cubic terms of order parameters are allowed in its effective Ginzburg-Landau free energy. Recently, it was shown by renormalization group (RG) analysis that continuous transition can happen at putatively first-order $Z_3$ transitions in 2D Dirac semimetals and such non-Landau phase transitions were dubbed fermion-induced quantum critical points (FIQCP) [Li et al., Nature Communications 8, 314 (2017)]. The RG analysis, controlled by the 1/$N$ expansion with $N$ the number of flavors of four-component Dirac fermions, shows that FIQCP occurs for $Ngeq N_c$. Previous QMC simulations of a microscopic model of SU($N$) fermions on the honeycomb lattice showed that FIQCP occurs at the transition between Dirac semimetals and Kekule-VBS for $Ngeq 2$. However, precise value of the lower bound $N_c$ has not been established. Especially, the case of $N=1$ has not been explored by studying microscopic models so far. Here, by introducing a generalized SU($N$) fermion model with $N=1$ (namely spinless fermions on the honeycomb lattice), we perform large-scale sign-problem-free Majorana quantum Monte Carlo simulations and find convincing evidence of FIQCP for $N=1$. Consequently, our results suggest that FIQCP can occur in 2D Dirac semimetals for all positive integers $Ngeq 1$.



قيم البحث

اقرأ أيضاً

85 - Jiang Zhou , Ya-jie Wu , 2017
In this paper we discuss the N$acute{e}$el and Kekul$acute{e}$ valence bond solids quantum criticality in graphene Dirac semimetal. Considering the quartic four-fermion interaction $g(bar{psi}_iGamma_{ij}psi_j)^2$ that contains spin,valley, and subla ttice degrees of freedom in the continuum field theory, we find the microscopic symmetry is spontaneously broken when the coupling $g$ is greater than a critical value $g_c$. The symmetry breaking gaps out the fermion and leads to semimetal-insulator transition. All possible quartic fermion-bilinear interactions give rise to the uniform critical coupling, which exhibits the multicritical point for various orders and the Landau-forbidden quantum critical point. We also investigate the typical critical point between N$acute{e}$el and Kekul$acute{e}$ valence bond solid transition when the symmetry is broken. The quantum criticality is captured by the Wess-Zumino-Witten term and there exist a mutual-duality for N$acute{e}$el-Kekul$acute{e}$ VBS order. We show the emergent spinon in the N$acute{e}$el-Kekul$acute{e}$ VBS transition , from which we conclude the phase transition is a deconfined quantum critical point. Additionally, the connection between the index theorem and zero energy mode bounded by the topological defect in the Kekul$acute{e}$ VBS phase is studied to reveal the N$acute{e}$el-Kekul$acute{e}$ VBS duality.
We explore the Matsubara quasiparticle fraction and the pseudogap of the two-dimensional Hubbard model with the dynamical cluster quantum Monte Carlo method. The character of the quasiparticle fraction changes from non-Fermi liquid, to marginal Fermi liquid to Fermi liquid as a function of doping, indicating the presence of a quantum critical point separating non-Fermi liquid from Fermi liquid character. Marginal Fermi liquid character is found at low temperatures at a very narrow range of doping where the single-particle density of states is also symmetric. At higher doping the character of the quasiparticle fraction is seen to cross over from Fermi Liquid to Marginal Fermi liquid as the temperature increases.
Building on a recent investigation of the Shastry-Sutherland model [S. Wessel et al., Phys. Rev. B 98, 174432 (2018)], we develop a general strategy to eliminate the Monte Carlo sign problem near the zero temperature limit in frustrated quantum spin models. If the Hamiltonian of interest and the sign-problem-free Hamiltonian---obtained by making all off-diagonal elements negative in a given basis---have the same ground state and this state is a member of the computational basis, then the average sign returns to one as the temperature goes to zero. We illustrate this technique by studying the triangular and kagome lattice Heisenberg antiferrromagnet in a magnetic field above saturation, as well as the Heisenberg antiferromagnet on a modified Husimi cactus in the dimer basis. We also provide detailed appendices on using linear programming techniques to automatically generate efficient directed loop updates in quantum Monte Carlo simulations.
We establish a scenario where fluctuations of new degrees of freedom at a quantum phase transition change the nature of a transition beyond the standard Landau-Ginzburg paradigm. To this end we study the quantum phase transition of gapless Dirac ferm ions coupled to a $mathbb{Z}_3$ symmetric order parameter within a Gross-Neveu-Yukawa model in 2+1 dimensions, appropriate for the Kekule transition in honeycomb lattice materials. For this model the standard Landau-Ginzburg approach suggests a first order transition due to the symmetry-allowed cubic terms in the action. At zero temperature, however, quantum fluctuations of the massless Dirac fermions have to be included. We show that they reduce the putative first-order character of the transition and can even render it continuous, depending on the number of Dirac fermions $N_f$. A non-perturbative functional renormalization group approach is employed to investigate the phase transition for a wide range of fermion numbers. For the first time we obtain the critical $N_f$, where the nature of the transition changes. Furthermore, it is shown that for large $N_f$ the change from the first to second order of the transition as a function of dimension occurs exactly in the physical 2+1 dimensions. We compute the critical exponents and predict sizable corrections to scaling for $N_f =2$.
We report large scale determinant Quantum Monte Carlo calculations of the effective bandwidth, momentum distribution, and magnetic correlations of the square lattice fermion Hubbard Hamiltonian at half-filling. The sharp Fermi surface of the non-inte racting limit is significantly broadened by the electronic correlations, but retains signatures of the approach to the edges of the first Brillouin zone as the density increases. Finite size scaling of simulations on large lattices allows us to extract the interaction dependence of the antiferromagnetic order parameter, exhibiting its evolution from weak coupling to the strong coupling Heisenberg limit. Our lattices provide improved resolution of the Greens function in momentum space, allowing a more quantitative comparison with time-of-flight optical lattice experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا