ﻻ يوجد ملخص باللغة العربية
A key insight of the bootstrap approach to cosmological correlations is the fact that all correlators of slow-roll inflation can be reduced to a unique building block---the four-point function of conformally coupled scalars, arising from the exchange of a massive scalar. Correlators corresponding to the exchange of particles with spin are then obtained by applying a spin-raising operator to the scalar-exchange solution. Similarly, the correlators of massless external fields can be derived by acting with a suitable weight-raising operator. In this paper, we present a systematic and highly streamlined derivation of these operators (and their generalizations) using tools of conformal field theory. Our results greatly simplify the theoretical foundations of the cosmological bootstrap program.
We extend the cosmological bootstrap to correlators involving massless particles with spin. In de Sitter space, these correlators are constrained both by symmetries and by locality. In particular, the de Sitter isometries become conformal symmetries
Scattering amplitudes at weak coupling are highly constrained by Lorentz invariance, locality and unitarity, and depend on model details only through coupling constants and particle content. In this paper, we develop an understanding of inflationary
We introduce a novel method to circumvent Weinbergs no-go theorem for self-tuning the cosmological vacuum energy: a Lorentz-violating finite-temperature superfluid can counter the effects of an arbitrarily large cosmological constant. Fluctuations of
An alternative for the construction of fundamental theories is the introduction of Galileons. These are fields whose action leads to non higher than second-order equations of motion. As this is a necessary but not sufficient condition to make the Ham
I show that the problem of realizing inflation in theories with random potentials of a limited number of fields can be solved, and agreement with the observational data can be naturally achieved if at least one of these fields has a non-minimal kinet