ﻻ يوجد ملخص باللغة العربية
We present a description of the Dragonfly Wide Field Survey (DWFS), a deep photometric survey of a wide area of sky. The DWFS covers 330 $mathrm{deg}^2$ in the equatorial GAMA fields and the Stripe 82 fields in the SDSS $g$ and $r$ bands. It is carried out with the 48-lens Dragonfly Telephoto Array, a telescope that is optimized for the detection of low surface brightness emission. The main goal of the survey is to study the dwarf galaxy population beyond the Local Group. In this paper, we describe the survey design and show early results. We reach $1sigma$ depths of $mu_gapprox 31$ mag arcsec$^{-2}$ on arcminute scales and show that Milky Way satellites such as Sextans, Bootes, and Ursa Major should be detectable out to $Dgtrsim 10$ Mpc. We also provide an overview of the elements and operation of the 48-lens Dragonfly telescope and a detailed description of its data reduction pipeline. The pipeline is fully automated, with individual frames subjected to a rigorous series of quality tests. The sky subtraction is performed in two stages, ensuring that emission features with spatial scales up to $sim 0.^{circ}9 times 0.^{circ}6$ are preserved. The DWFS provides unparalleled sensitivity to low surface brightness features on arcminute scales.
We present the MUSE-Wide survey, a blind, 3D spectroscopic survey in the CANDELS/GOODS-S and CANDELS/COSMOS regions. Each MUSE-Wide pointing has a depth of 1 hour and hence targets more extreme and more luminous objects over 10 times the area of the
In December 2010, NASA created a Science Definition Team (SDT) for WFIRST, the Wide Field Infra-Red Survey Telescope, recommended by the Astro 2010 Decadal Survey as the highest priority for a large space mission. The SDT was chartered to work with t
In December 2010, NASA created a Science Definition Team (SDT) for WFIRST, the Wide Field Infra-Red Survey Telescope, recommended by the Astro 2010 Decadal Survey as the highest priority for a large space mission. The SDT was chartered to work with t
We present the MUSE Hubble Ultra Deep Survey, a mosaic of nine MUSE fields covering 90% of the entire HUDF region with a 10-hour deep exposure time, plus a deeper 31-hour exposure in a single 1.15 arcmin2 field. The improved observing strategy and ad
We present the first set of XMM-Newton EPIC observations in the 2 square degree COSMOS field. The strength of the COSMOS project is the unprecedented combination of a large solid angle and sensitivity over the whole multiwavelength spectrum. The XMM-