ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning-Assisted Secure End-to-End Network Slicing for Cyber-Physical Systems

70   0   0.0 ( 0 )
 نشر من قبل Nirwan Ansari
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

There is a pressing need to interconnect physical systems such as power grid and vehicles for efficient management and safe operations. Owing to the diverse features of physical systems, there is hardly a one-size-fits-all networking solution for developing cyber-physical systems. Network slicing is a promising technology that allows network operators to create multiple virtual networks on top of a shared network infrastructure. These virtual networks can be tailored to meet the requirements of different cyber-physical systems. However, it is challenging to design secure network slicing solutions that can efficiently create end-to-end network slices for diverse cyber-physical systems. In this article, we discuss the challenges and security issues of network slicing, study learning-assisted network slicing solutions, and analyze their performance under the denial-of-service attack. We also present a design and implementation of a small-scale testbed for evaluating the network slicing solutions.



قيم البحث

اقرأ أيضاً

Technical advances in ubiquitous sensing, embedded computing, and wireless communication are leading to a new generation of engineered systems called cyber-physical systems (CPS). CPS promises to transform the way we interact with the physical world just as the Internet transformed how we interact with one another. Before this vision becomes a reality, however, a large number of challenges have to be addressed. Network quality of service (QoS) management in this new realm is among those issues that deserve extensive research efforts. It is envisioned that wireless sensor/actuator networks (WSANs) will play an essential role in CPS. This paper examines the main characteristics of WSANs and the requirements of QoS provisioning in the context of cyber-physical computing. Several research topics and challenges are identified. As a sample solution, a feedback scheduling framework is proposed to tackle some of the identified challenges. A simple example is also presented that illustrates the effectiveness of the proposed solution.
Domain science applications and workflow processes are currently forced to view the network as an opaque infrastructure into which they inject data and hope that it emerges at the destination with an acceptable Quality of Experience. There is little ability for applications to interact with the network to exchange information, negotiate performance parameters, discover expected performance metrics, or receive status/troubleshooting information in real time. The work presented here is motivated by a vision for a new smart network and smart application ecosystem that will provide a more deterministic and interactive environment for domain science workflows. The Software-Defined Network for End-to-end Networked Science at Exascale (SENSE) system includes a model-based architecture, implementation, and deployment which enables automated end-to-end network service instantiation across administrative domains. An intent based interface allows applications to express their high-level service requirements, an intelligent orchestrator and resource control systems allow for custom tailoring of scalability and real-time responsiveness based on individual application and infrastructure operator requirements. This allows the science applications to manage the network as a first-class schedulable resource as is the current practice for instruments, compute, and storage systems. Deployment and experiments on production networks and testbeds have validated SENSE functions and performance. Emulation based testing verified the scalability needed to support research and education infrastructures. Key contributions of this work include an architecture definition, reference implementation, and deployment. This provides the basis for further innovation of smart network services to accelerate scientific discovery in the era of big data, cloud computing, machine learning and artificial intelligence.
A long-term goal of machine learning is to build intelligent conversational agents. One recent popular approach is to train end-to-end models on a large amount of real dialog transcripts between humans (Sordoni et al., 2015; Vinyals & Le, 2015; Shang et al., 2015). However, this approach leaves many questions unanswered as an understanding of the precise successes and shortcomings of each model is hard to assess. A contrasting recent proposal are the bAbI tasks (Weston et al., 2015b) which are synthetic data that measure the ability of learning machines at various reasoning tasks over toy language. Unfortunately, those tests are very small and hence may encourage methods that do not scale. In this work, we propose a suite of new tasks of a much larger scale that attempt to bridge the gap between the two regimes. Choosing the domain of movies, we provide tasks that test the ability of models to answer factual questions (utilizing OMDB), provide personalization (utilizing MovieLens), carry short conversations about the two, and finally to perform on natural dialogs from Reddit. We provide a dataset covering 75k movie entities and with 3.5M training examples. We present results of various models on these tasks, and evaluate their performance.
139 - Damao Yang , Sihan Peng , He Huang 2018
We design a dispatch system to improve the peak service quality of video on demand (VOD). Our system predicts the hot videos during the peak hours of the next day based on the historical requests, and dispatches to the content delivery networks (CDNs ) at the previous off-peak time. In order to scale to billions of videos, we build the system with two neural networks, one for video clustering and the other for dispatch policy developing. The clustering network employs autoencoder layers and reduces the video number to a fixed value. The policy network employs fully connected layers and ranks the clustered videos with dispatch probabilities. The two networks are coupled with weight-sharing temporal layers, which analyze the video request sequences with convolutional and recurrent modules. Therefore, the clustering and dispatch tasks are trained in an end-to-end mechanism. The real-world results show that our approach achieves an average prediction accuracy of 17%, compared with 3% from the present baseline method, for the same amount of dispatches.
In this paper we present ActiveStereoNet, the first deep learning solution for active stereo systems. Due to the lack of ground truth, our method is fully self-supervised, yet it produces precise depth with a subpixel precision of $1/30th$ of a pixel ; it does not suffer from the common over-smoothing issues; it preserves the edges; and it explicitly handles occlusions. We introduce a novel reconstruction loss that is more robust to noise and texture-less patches, and is invariant to illumination changes. The proposed loss is optimized using a window-based cost aggregation with an adaptive support weight scheme. This cost aggregation is edge-preserving and smooths the loss function, which is key to allow the network to reach compelling results. Finally we show how the task of predicting invalid regions, such as occlusions, can be trained end-to-end without ground-truth. This component is crucial to reduce blur and particularly improves predictions along depth discontinuities. Extensive quantitatively and qualitatively evaluations on real and synthetic data demonstrate state of the art results in many challenging scenes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا