ﻻ يوجد ملخص باللغة العربية
Atomically thin transition metal dichalcogenides (TMDs) have distinct opto-electronic properties including enhanced luminescence and high on-off current ratios, which can be further modulated by making more complex TMD heterostructures. However, resolution limits of conventional optical methods do not allow for direct optical-structural correlation measurements in these materials, particularly of buried interfaces in TMD heterostructures. Here we use, for the first time, electron beam induced cathodoluminescence in a scanning transmission electron microscope (CL-STEM) to measure optical properties of monolayer TMDs (WS2, MoS2 and WSSe alloy) encapsulated between layers of hBN. We observe dark areas resulting from localized (~ 100 nm) imperfect interfaces and monolayer folding, which shows that the intimate contact between layers in this application-relevant heterostructure is required for proper inter layer coupling. We also realize a suitable imaging method that minimizes electron-beam induced changes and provides measurement of intrinsic properties. To overcome the limitation of small electron interaction volume in TMD monolayer (and hence low photon yield), we find that encapsulation of TMD monolayers with hBN and subsequent annealing is important. CL-STEM offers to be a powerful method to directly measure structure-optical correspondence in lateral or vertical heterostructures and alloys.
Motivated by the triumph and limitation of graphene for electronic applications, atomically thin layers of group VI transition metal dichalcogenides are attracting extensive interest as a class of graphene-like semiconductors with a desired band-gap
Transition metal dichalcogenide monolayers are promising candidates for exploring new electronic and optical phenomena and for realizing atomically thin optoelectronic devices. They host tightly bound electron-hole pairs (excitons) that can be effici
Based on first-principles calculations and symmetry analysis, we predict atomically thin ($1-N$ layers) 2H group-VIB TMDs $MX_2$ ($M$ = Mo, W; $X$ = S, Se, Te) are large-gap higher-order topological crystalline insulators protected by $C_3$ rotation
Exfoliated chromium triiodide (CrI$_3$) is a layered van der Waals (vdW) magnetic insulator that consists of ferromagnetic layers coupled through antiferromagnetic interlayer exchange. The resulting permutations of magnetic configurations combined wi
A novel method for the direct correlation at the nanoscale of structural and optical properties of single GaAs nanowires is reported. Nanowires consisting of 100% wurtzite and nanowires presenting zinc-blende/wurtzite polytypism are investigated by p