ﻻ يوجد ملخص باللغة العربية
Magnetism, coupled with nontrivial band topology, can bring about many interesting and exotic phenomena, so that magnetic topological materials have attracted persistent research interest. However, compared with non-magnetic topological materials (TMs), the magnetic TMs are less studied, since their magnetic structures and topological phase transitions are usually complex and the first-principles predictions are usually sensitive on the effect of Coulomb interaction. In this work, we present a comprehensive investigation of XFe4Ge2 (X = Y, Lu) and Mn3Pt, and find these materials to be filling-enforced magnetic topological metals. Our first-principles calculations show that XFe4Ge2 (X = Y, Lu) host Dirac points near the Fermi level at high symmetry point S. These Dirac points are protected by PT symmetry (P and T are inversion and time-reversal transformations, respectively) and a 2-fold screw rotation symmetry. Moreover, through breaking PT symmetry, the Dirac points would split into Weyl nodes. Mn3Pt is found to host 4-fold degenerate band crossings in the whole high symmetry path of A-Z. We also utilize the GGA+U scheme to take into account the effect of Coulomb repulsion and find that the filling-enforced topological properties are naturally insensitive on U.
Filling-enforced Dirac semimetals, or those required at specific fillings by the combination of crystalline and time-reversal symmetries, have been proposed and discovered in numerous materials. However, Dirac points in these materials are not genera
In 3D topological insulators achieving a genuine bulk-insulating state is an important research topic. Recently, the material system (Bi,Sb)$_{2}$(Te,Se)$_{3}$ (BSTS) has been proposed as a topological insulator with high resistivity and a low carrie
We report two theoretical discoveries for $mathbb{Z}_2$-topological metals and semimetals. It is shown first that any dimensional $mathbb{Z}_2$ Fermi surface is topologically equivalent to a Fermi point. Then the famous conventional no-go theorem, wh
For three-dimensional metals, Landau levels disperse as a function of the magnetic field and the momentum wavenumber parallel to the field. In this two-dimensional parameter space, it is shown that two conically-dispersing Landau levels can touch at
In the present paper, we propose a new way to classify centrosymmetric metals by studying the Zeeman effect caused by an external magnetic field described by the momentum dependent g-factor tensor on the Fermi surfaces. Nontrivial U(1) Berrys phase a