ﻻ يوجد ملخص باللغة العربية
Context: Knowledge about hot, massive stars is usually inferred from quantitative spectroscopy. To analyse non-spherical phenomena, the existing 1D codes must be extended to higher dimensions, and corresponding tools need to be developed. Aims: We present a 3D radiative transfer code that is capable of calculating continuum and line scattering problems in the winds of hot stars. By considering spherically symmetric test models, we discuss potential error sources, and indicate advantages and disadvantages by comparing different solution methods. Further, we analyse the UV resonance line formation in the winds of rapidly rotating O stars. Methods: We consider both a (simplified) continuum model including scattering and thermal sources, and a UV resonance line transition approximated by a two-level-atom. We applied the short-characteristics (SC) method, using linear or monotonic Bezier interpolations, to solve the equation of radiative transfer on a non-uniform Cartesian grid. To calculate scattering dominated problems, our solution method is supplemented by an accelerated $Lambda$-iteration scheme. Results: For the spherical test models, the mean relative error of the source function is on the $5-20,%$ level, depending on the applied interpolation technique and the complexity of the considered model. All calculated line profiles are in excellent agreement with corresponding 1D solutions. The predicted line profiles from fast rotating stars show a distinct behaviour as a function of rotational speed and inclination. This behaviour is tightly coupled to the wind structure and the description of gravity darkening and stellar surface distortion. Conclusions: Our SC methods are ready to be used for quantitative analyses of UV resonance line profiles. When calculating optically thick continua, both SC methods give reliable results, in contrast to the alternative finite-volume method.
Massive stars present strong stellar that which are described by the radiation driven wind theory. Accurate mass-loss rates are necessary to properly describe the stellar evolution across the Hertzsprung--Russel Diagram. We present a self-consisten
We investigate the effects of stellar limb-darkening and photospheric perturbations for the onset of wind structure arising from the strong, intrinsic line-deshadowing instability (LDI) of a line-driven stellar wind. A linear perturbation analysis sh
Hot massive stars present strong stellar winds that are driven by absorption, scattering and re-emission of photons by the ions of the atmosphere (textit{line-driven winds}). A better comprehension of this phenomenon, and a more accurate calculation
We compare maps of scattering polarization signals obtained from three-dimensional (3D) radiation transfer calculations in a magneto-convection model of the solar atmosphere using formal solvers based on the short characteristics (SC) and the long ch
Aims. We want to understand the chemistry and physics of disks on the basis of a large unbiased and statistically relevant grid of disk models. One of the main goals is to explore the diagnostic power of various gas emission lines and line ratios for