ﻻ يوجد ملخص باللغة العربية
Sequence-to-Sequence (S2S) models recently started to show state-of-the-art performance for automatic speech recognition (ASR). With these large and deep models overfitting remains the largest problem, outweighing performance improvements that can be obtained from better architectures. One solution to the overfitting problem is increasing the amount of available training data and the variety exhibited by the training data with the help of data augmentation. In this paper we examine the influence of three data augmentation methods on the performance of two S2S model architectures. One of the data augmentation method comes from literature, while two other methods are our own development - a time perturbation in the frequency domain and sub-sequence sampling. Our experiments on Switchboard and Fisher data show state-of-the-art performance for S2S models that are trained solely on the speech training data and do not use additional text data.
For various speech-related tasks, confidence scores from a speech recogniser are a useful measure to assess the quality of transcriptions. In traditional hidden Markov model-based automatic speech recognition (ASR) systems, confidence scores can be r
Acoustic-to-Word recognition provides a straightforward solution to end-to-end speech recognition without needing external decoding, language model re-scoring or lexicon. While character-based models offer a natural solution to the out-of-vocabulary
Recently sequence-to-sequence models have started to achieve state-of-the-art performance on standard speech recognition tasks when processing audio data in batch mode, i.e., the complete audio data is available when starting processing. However, whe
In this paper, we explore several new schemes to train a seq2seq model to integrate a pre-trained LM. Our proposed fusion methods focus on the memory cell state and the hidden state in the seq2seq decoder long short-term memory (LSTM), and the memory
Integrating an external language model into a sequence-to-sequence speech recognition system is non-trivial. Previous works utilize linear interpolation or a fusion network to integrate external language models. However, these approaches introduce ex