Improvement on corrosion resistance and biocompability of ZK60 magnesium alloy by carboxyl ion implantation


الملخص بالإنكليزية

Magnesium alloys have been considered to be potential biocompatible metallic materials. Further improvement on the anti-corrosion is expected to make this type of materials more suitable for biomedical applications in the fields of orthopedics, cardiovascular surgery and others. In this paper, we introduce a method of carboxyl ion (COOH+) implantation to reduce the degradation of ZK60 Mg alloy and improve its functionality in physiological environment. X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) experiments show the formation of a smooth layer containing carbaxylic group, carbonate, metal oxides and hydroxides on the ion implanted alloy surface. Corrosion experiments and in vitro cytotoxicity tests demonstrate that the ion implantation treatment can both reduce the corrosion rate and improve the biocompatibility of the alloy. The promising results indicate that organic functional group ion implantation may be a practical method of improving the biological and corrosion properties of magnesium alloys.

تحميل البحث