ترغب بنشر مسار تعليمي؟ اضغط هنا

A Game-theoretical Approach to Analyze Film Release Time

85   0   0.0 ( 0 )
 نشر من قبل Mengjing Chen
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Film release dates play an important part in box office revenues because of the facts of obvious seasonality demand in the film industry and severe competition among films shown at the same time. In this paper, we study how film studios choose release time for movies they produce to maximize their box offices. We first formalize this problem as an attraction competition game where players (film studios) consider both potential profits and competitors choices when deciding the release time. Then we prove that there always exists a pure Nash equilibrium and give the sufficient condition of the uniqueness of the Nash equilibrium. Our model can be generalized to an extensive game and we compute the subgame-perfect equilibrium for homogeneous players. For the case that one film studio could have multiple movies to release, we prove that finding a players best response is NP-hard and it does not guarantee the existence of a pure Nash equilibrium. Experiments are provided to support the soundness of our model. In the final state, most of film studios, accounting for 84 percent of the market, would not change their release time. The behaviors of film studios imply they are following some strategies to reach a Nash equilibrium.



قيم البحث

اقرأ أيضاً

162 - Xuanyu Cao , K. J. Ray Liu 2017
In this work, we study the social learning problem, in which agents of a networked system collaborate to detect the state of the nature based on their private signals. A novel distributed graphical evolutionary game theoretic learning method is propo sed. In the proposed game-theoretic method, agents only need to communicate their binary decisions rather than the real-valued beliefs with their neighbors, which endows the method with low communication complexity. Under mean field approximations, we theoretically analyze the steady state equilibria of the game and show that the evolutionarily stable states (ESSs) coincide with the decisions of the benchmark centralized detector. Numerical experiments are implemented to confirm the effectiveness of the proposed game-theoretic learning method.
Game theory is an established branch of mathematics that offers a rich set of mathematical tools for multi-person strategic decision making that can be used to model the interactions of decision makers in security problems who compete for limited and shared resources. This article presents a review of the literature in the area of game theoretical modelling of network/cybersecurity.
Vehicular ad-hoc networks (VANETs) have recently attracted a lot of attention due to their immense potentials and applications. Wide range of coverage and accessibility to end users make VANETs a good target for commercial companies. In this paper, w e consider a scenario in which advertising companies aim to disseminate their advertisements in different areas of a city by utilizing VANETs infrastructure. These companies compete for renting the VANETs infrastructure to spread their advertisements. We partition the city map into different blocks, and consider a manager for all the blocks who is in charge of splitting the time between interested advertising companies. Each advertising company (AdC) is charged proportional to the allocated time. In order to find the best time splitting between AdCs, we propose a Stackelberg game scheme in which the block manager assigns the companies to the blocks and imposes the renting prices to different companies in order to maximize its own profit. Based on this, AdCs request the amount of time they desire to rent the infrastructure in order to maximize their utilities. To obtain the Stackelberg equilibrium of the game, a mixed integer nonlinear optimization problem is solved using the proposed optimal and sub-optimal algorithms. The simulation results demonstrate that the sub-optimal algorithm approaches the optimal one in performance with lower complexity.
We introduce a game-theoretic approach to the study of recommendation systems with strategic content providers. Such systems should be fair and stable. Showing that traditional approaches fail to satisfy these requirements, we propose the Shapley med iator. We show that the Shapley mediator fulfills the fairness and stability requirements, runs in linear time, and is the only economically efficient mechanism satisfying these properties.
Despite the numerous benefits brought by Device-to-Device (D2D) communications, the introduction of D2D into cellular networks poses many new challenges in the resource allocation design due to the co-channel interference caused by spectrum reuse and limited battery life of User Equipments (UEs). Most of the previous studies mainly focus on how to maximize the Spectral Efficiency (SE) and ignore the energy consumption of UEs. In this paper, we study how to maximize each UEs Energy Efficiency (EE) in an interference-limited environment subject to its specific Quality of Service (QoS) and maximum transmission power constraints. We model the resource allocation problem as a noncooperative game, in which each player is self-interested and wants to maximize its own EE. A distributed interference-aware energy-efficient resource allocation algorithm is proposed by exploiting the properties of the nonlinear fractional programming. We prove that the optimum solution obtained by the proposed algorithm is the Nash equilibrium of the noncooperative game. We also analyze the tradeoff between EE and SE and derive closed-form expressions for EE and SE gaps.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا