ترغب بنشر مسار تعليمي؟ اضغط هنا

Performance evaluation of a silicon strip detector for positrons/electrons from a pulsed a muon beam

93   0   0.0 ( 0 )
 نشر من قبل Takashi Yamanaka Dr.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A high-intensity pulsed muon beam is becoming available at the at the Japan Proton Accelerator Research Complex (J-PARC). Many experiments to study fundamental physics using this high-intensity muon beam are proposed. An experiment to measure the muon magnetic moment anomaly ($g-2$) and the muon electric dipole moment (EDM) is one of these experiments and it requires a tracking detector for positrons from muon decay. Fine segmentation is required in a detector to tolerate the high rate of positrons. The time resolution is required to be much better than the muon anomalous spin precession period while a buffer depth of a front-end electronics needs to be much longer than the accelerated muon lifetime. Requirements of this detector also meet requirements of a measurement of the muonium hyperfine structure interval at the J-PARC and another experiment to measure the proton charge radius at Tohoku University. We have developed a single-sided silicon strip sensor with a 190 $mu$m pitch, a front-end electronics with a sampling rate of 200 MHz and a buffer memory depth of 8192, and a data acquisition system based on DAQ-Middleware for the J-PARC muon $g-2$/EDM experiment. We have fabricated detector modules consisting of this sensor and the front-end electronics. Performance of fabricated detector modules was evaluated at a laboratory and a beam test using the positron beam at Tohoku University. The detector is confirmed to satisfy all requirements of the experiments except for the time walk, which will be solved by the next version of a front-end electronics.



قيم البحث

اقرأ أيضاً

The silicon-strip tracker of the China Seismo-Electromagnetic Satellite (CSES) consists of two double-sided silicon strip detectors (DSSDs) which provide incident particle tracking information. The low-noise analog ASIC VA140 was used in this study f or DSSD signal readout. A beam test on the DSSD module was performed at the Beijing Test Beam Facility of the Beijing Electron Positron Collider (BEPC) using a 400~800 MeV/c proton beam. The pedestal analysis results, RMSE noise, gain correction, and particle incident position reconstruction of the DSSD module are presented.
76 - J. H. Han , H. S. Ahn , J. B. Bae 2020
When testing and calibrating particle detectors in a test beam, accurate tracking information independent of the detector being tested is extremely useful during the offline analysis of the data. A general-purpose Silicon Beam Tracker (SBT) was const ructed with an active area of 32.0 x 32.0 mm2 to provide this capability for the beam calibration of the Cosmic Ray Energetics And Mass (CREAM) calorimeter. The tracker consists of two modules, each comprised of two orthogonal layers of 380 {mu}m thick silicon strip sensors. In one module each layer is a 64-channel AC-coupled single-sided silicon strip detector (SSD) with a 0.5 mm pitch. In the other, each layer is a 32-channel DC-coupled single-sided SSD with a 1.0 mm pitch. The signals from the 4 layers are read out using modified CREAM hodoscope front-end electronics with a USB 2.0 interface board to a Linux DAQ PC. In this paper, we present the construction of the SBT, along with its performance in radioactive source tests and in a CERN beam test in October 2006.
In this paper we present a method of scintillation detector energy calibration using the gamma-rays. The technique is based on the Compton scattering of gamma-rays in a scintillation detector and subsequent photoelectric absorption of the scattered p hoton in the Ge-detector. The novelty of this method is that the source of gamma rays, the germanium and scintillation detectors are immediately arranged adjacent to each other. The method presents an effective solution for the detectors consisting of a low atomic number materials, when the ratio between Compton effect and photoelectric absorption is large and the mean path of gamma-rays is comparable to the size of the detector. The technique can be used for the precision measurements of the scintillator light yield dependence on the electron energy.
254 - L.Arnold , J.Baudot , D.Bonnet 2002
The STAR Silicon Strip Detector (SSD) completes the three layers of the Silicon Vertex Tracker (SVT) to make an inner tracking system located inside the Time Projection Chamber (TPC). This additional fourth layer provides two dimensional hit position and energy loss measurements for charged particles, improving the extrapolation of TPC tracks through SVT hits. To match the high multiplicity of central Au+Au collisions at RHIC the double sided silicon strip technology was chosen which makes the SSD a half million channels detector. Dedicated electronics have been designed for both readout and control. Also a novel technique of bonding, the Tape Automated Bonding (TAB), was used to fullfill the large number of bounds to be done. All aspects of the SSD are shortly described here and test performances of produced detection modules as well as simulated results on hit reconstruction are given.
A silicon-tungsten (Si-W) sampling calorimeter, consisting of 19 alternate layers of silicon pad detectors (individual pad area of 1~cm$^2$) and tungsten absorbers (each of one radiation length), has been constructed for measurement of electromagneti c showers over a large energy range. The signal from each of the silicon pads is readout using an ASIC with a dynamic range from $-300$~fC to $+500$~fC. Another ASIC with a larger dynamic range, $pm 600$~fC has been used as a test study. The calorimeter was exposed to pion and electron beams at the CERN Super Proton Synchrotron (SPS) to characterise the response to minimum ionising particles (MIP) and showers from electromagnetic (EM) interactions. Pion beams of 120 GeV provided baseline measurements towards the understanding of the MIP behaviour in the silicon pad layers, while electron beams of energy from 5 GeV to 60 GeV rendered detailed shower profiles within the calorimeter. The energy deposition in each layer, the longitudinal shower profile, and the total energy deposition have been measured for each incident electron energy. Linear behaviour of the total measured energy ($E$) with that of the incident particle energy ($E_{0}$) ensured satisfactory calorimetric performance. For a subset of the data sample, selected based on the cluster position of the electromagnetic shower of the incident electron, the dependence of the measured energy resolution on $E_{0}$ has been found to be $sigma/E = (15.36/sqrt{E_0(mathrm{GeV)}} oplus 2.0) %$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا