ﻻ يوجد ملخص باللغة العربية
In this Letter, we investigate the variation of endohedral A@CN potential due to addition at the center of it a positive charge, for example, in the process of atom A photoionization. Using a reasonable model to describe the fullerenes shell, we managed to calculate the variation that is a consequence of the monopole polarization of CN shell. We analyze model potentials with flat and non-flat bottoms and demonstrate that the phenomenological potentials that properly simulates the C60 shell potential should belong to a family of potentials with a non-flat bottom. As concrete example, we use the Lorentz-bubble model potential. By varying the thickness of this potential, we describe the various degrees of the monopole polarization of the C60 shell by positive electric charge in the center of the shell. We calculated the photoionization cross-sections of He, Ar and Xe atoms located at the center of C60 shell with and without taking into account accompanying this process monopole polarization of the fullerenes shell. Unexpectedly, we found that the monopole polarization do not affect the photoionization cross sections of these endohedral atoms.
We analyze using Poisson equation the spatial distributions of the positive charge of carbon atomic nuclei shell and negative charge of electron clouds forming the electrostatic potential of the C60 fullerene shell as a whole. We consider also the ca
We have demonstrated that the polarization of the fullerene shell considerably alters the polarization potential of an atom, stuffed inside a fullerene. This essentially affects the electron elastic scattering phases as well as corresponding cross-se
We provide answers to long-lasting questions in the puzzling behavior of fullerene-fullerene fusion: Why are the fusion barriers so exceptionally high and the fusion cross sections so extremely small? An ab initio nonadiabatic quantum molecular dynam
This is an investigation on the dynamical screening of an atom confined within a fullerene of finite width. The two surfaces of the fullerene lead to the presence of two surface plasmon eigenmodes. It is shown that, in the vicinity of these two eigen
A pseudopotential of $C_{60}^-$ has been constructed from ab-initio quantum-mechanical calculations. Since the obtained pseudopotential can be easily fitted by rather simple analytical approximation it can be effectively used both in classical and qu