ﻻ يوجد ملخص باللغة العربية
A very large dynamic range with simultaneous capture of both large- and small-scales in the simulations of cosmic structures is required for correct modelling of many cosmological phenomena, particularly at high redshift. This is not always available, or when it is, it makes such simulations very expensive. We present a novel sub-grid method for modelling low-mass ($10^5,M_odotleq M_{rm halo}leq 10^9,M_odot$) haloes, which are otherwise unresolved in large-volume cosmological simulations limited in numerical resolution. In addition to the deterministic halo bias that captures the average property, we model its stochasticity that is correlated in time. We find that the instantaneous binned distribution of the number of haloes is well approximated by a log-normal distribution, with overall amplitude modulated by this temporal correlation bias. The robustness of our new scheme is tested against various statistical measures, and we find that temporally correlated stochasticity generates mock halo data that is significantly more reliable than that from temporally uncorrelated stochasticity. Our method can be applied for simulating processes that depend on both the small- and large-scale structures, especially for those that are sensitive to the evolution history of structure formation such as the process of cosmic reionization. As a sample application, we generate a mock distribution of medium-mass ($ 10^{8} leq M/M_{odot} leq 10^{9}$) haloes inside a 500 Mpc$,h^{-1}$, $300^3$ grid simulation box. This mock halo catalogue bears a reasonable statistical agreement with a halo catalogue from numerically-resolved haloes in a smaller box, and therefore will allow a very self-consistent sets of cosmic reionization simulations in a box large enough to generate statistically reliable data.
We study the relationship between dark-matter haloes and matter in the MIP $N$-body simulation ensemble, which allows precision measurements of this relationship, even deeply into voids. What enables this is a lack of discreteness, stochasticity, and
We study the effect of large-scale tidal fields on internal halo properties using a set of N-body simulations. We measure significant cross-correlations between large-scale tidal fields and several non-scalar halo properties: shapes, velocity dispers
The simplest stochastic halo formation models assume that the traceless part of the shear field acts to increase the initial overdensity (or decrease the underdensity) that a protohalo (or protovoid) must have if it is to form by the present time. Eq
It has been recently shown that any halo velocity bias present in the initial conditions does not decay to unity, in agreement with predictions from peak theory. However, this is at odds with the standard formalism based on the coupled fluids approxi
Small-scale density fluctuations can significantly affect reionization but are typically modelled quite crudely. Unresolved fluctuations in numerical simulations and analytical calculations are included using a gas clumping factor, typically assumed