ﻻ يوجد ملخص باللغة العربية
We unify two prevailing theories of thermal quenching (TQ) in rare-earth-activated inorganic phosphors - the cross-over and auto-ionization mechanisms - into a single predictive model. Crucially, we have developed computable descriptors for activator environment stability from ab initio molecular dynamics simulations to predict TQ under the cross-over mechanism, which can be augmented by a band gap calculation to account for auto-ionization. The resulting TQ model predicts the experimental TQ in 29 known phosphors to within ~ 3-8%. Finally, we have developed an efficient topological approach to rapidly screen vast chemical spaces for the discovery of novel, thermally robust phosphors.
Thermal conductivity is a fundamental material property but challenging to predict, with less than 5% out of about $10^5$ synthesized inorganic materials being documented. In this work, we extract the structural chemistry that governs lattice thermal
Experimental and theoretical studies of fission of doubly-charged Li, Na, and K clusters in the low fissility regime reveal the strong influence of electronic shell effects on the fission products. The electronic entropy controls the quenching of the
Herein, some magnetic nanoparticles (MNP)/clay/polymer nanocomposites have been prepared, whose saturation magnetization is higher than that of pure oleic acid coated MNP component. The existence of unique nano-network structure and tight three-phase
We study from first principles the emission linewidth of Eu$^{2+}$-doped LED phosphors. Based on the one-dimensional configuration coordinate model, an analysis of first principles data obtained for fifteen compounds show that, at working temperature
Photochemical upconversion is a promising way to boost the efficiency of solar cells using triplet exciton annihilation. Currently, predicting the performance of photochemical upconversion devices is challenging. We present an open source software pa