Polymorphism in rapidly-changing cyclic environment


الملخص بالإنكليزية

Selection in a time-periodic environment is modeled via the continuous-time two-player replicator dynamics, which for symmetric pay-offs reduces to the Fisher equation of mathematical genetics. For a sufficiently rapid and cyclic [fine-grained] environment, the time-averaged population frequencies are shown to obey a replicator dynamics with a non-linear fitness that is induced by environmental changes. The non-linear terms in the fitness emerge due to populations tracking their time-dependent environment. These terms can induce a stable polymorphism, though they do not spoil the polymorphism that exists already without them. In this sense polymorphic populations are more robust with respect to their time-dependent environments. The overall fitness of the problem is still given by its time-averaged value, but the emergence of polymorphism during genetic selection can be accompanied by decreasing mean fitness of the population. The impact of the uncovered polymorphism scenario on the models of diversity is examplified via the rock-paper-scissors dynamics, and also via the prisoners dilemma in a time-periodic environment.

تحميل البحث