ﻻ يوجد ملخص باللغة العربية
Introduction- Identifying the potential firing patterns following different brain regions under normal and abnormal conditions increases our understanding of events at the level of neural interactions in the brain. The Izhikevich model is one of the simplest biologically plausible models, i.e. capable of capturing the most recognized firing patterns of neurons. This property makes the model efficient in simulating the large-scale networks of neurons. Improving the Izhikevich model for adapting to the neuronal activity of the rat brain with great accuracy would make the model effective for future neural network implementations. Methods- Data sampling from two brain regions, the HIP and BLA, was performed by the extracellular recordings of male rats, and spike sorting was conducted by Plexon offline sorter. Further analyses were performed through NeuroExplorer and MATLAB. To optimize the Izhikevich model parameters, a genetic algorithm was used. The process of comparison in each iteration leads to the survival of better populations until achieving the optimum solution. Results- In the present study, the possible firing patterns of the real single neurons of the HIP and BLA were identified. Additionally, an improved Izhikevich model was achieved. Accordingly, the real neuronal spiking pattern of these regions neurons and the corresponding cases of the Izhikevich neuron spiking pattern were adjusted with great accuracy. Conclusion- This study was conducted to elevate our knowledge of neural interactions in different structures of the brain and accelerate the quality of future large-scale neural network simulations, as well as reducing the modeling complexity. This aim was achievable by performing the improved Izhikevich model, and inserting only the plausible firing patterns, and eliminating unrealistic ones.
Developing electrophysiological recordings of brain neuronal activity and their analysis provide a basis for exploring the structure of brain function and nervous system investigation. The recorded signals are typically a combination of spikes and no
Individual locations of many neuronal cell bodies (>10^4) are needed to enable statistically significant measurements of spatial organization within the brain such as nearest-neighbor and microcolumnarity measurements. In this paper, we introduce an
Excessively high, neural synchronisation has been associated with epileptic seizures, one of the most common brain diseases worldwide. A better understanding of neural synchronisation mechanisms can thus help control or even treat epilepsy. In this p
Polychronous neural groups are effective structures for the recognition of precise spike-timing patterns but the detection method is an inefficient multi-stage brute force process that works off-line on pre-recorded simulation data. This work present
We study the stable phases of an attractor neural network model, with binary units, for hippocampal place cells encoding 1D or 2D spatial maps or environments. Using statistical mechanics tools we show that, below critical values for the noise in the