ﻻ يوجد ملخص باللغة العربية
Sports competitions are widely researched in computer and social science, with the goal of understanding how players act under uncertainty. While there is an abundance of computational work on player metrics prediction based on past performance, very few attempts to incorporate out-of-game signals have been made. Specifically, it was previously unclear whether linguistic signals gathered from players interviews can add information which does not appear in performance metrics. To bridge that gap, we define text classification tasks of predicting deviations from mean in NBA players in-game actions, which are associated with strategic choices, player behavior and risk, using their choice of language prior to the game. We collected a dataset of transcripts from key NBA players pre-game interviews and their in-game performance metrics, totalling in 5,226 interview-metric pairs. We design neural models for players action prediction based on increasingly more complex aspects of the language signals in their open-ended interviews. Our models can make their predictions based on the textual signal alone, or on a combination with signals from past-performance metrics. Our text-based models outperform strong baselines trained on performance metrics only, demonstrating the importance of language usage for action prediction. Moreover, the models that employ both textual input and past-performance metrics produced the best results. Finally, as neural networks are notoriously difficult to interpret, we propose a method for gaining further insight into what our models have learned. Particularly, we present an LDA-based analysis, where we interpret model predictions in terms of correlated topics. We find that our best performing textual model is most associated with topics that are intuitively related to each prediction task and that better models yield higher correlation with more informative topics.
Great progress has been made in 3D body pose and shape estimation from a single photo. Yet, state-of-the-art results still suffer from errors due to challenging body poses, modeling clothing, and self occlusions. The domain of basketball games is par
We address the task of text translation on the How2 dataset using a state of the art transformer-based multimodal approach. The question we ask ourselves is whether visual features can support the translation process, in particular, given that this i
A traditional assumption in game theory is that players are opaque to one another -- if a player changes strategies, then this change in strategies does not affect the choice of other players strategies. In many situations this is an unrealistic assu
It is challenging to get access to datasets related to the physical performance of soccer players. The teams consider such information highly confidential, especially if it covers in-game performance.Hence, most of the analysis and evaluation of the
Despite the widely successful applications, bootstrapping and fine-tuning semantic parsers are still a tedious process with challenges such as costly data annotation and privacy risks. In this paper, we suggest an alternative, human-in-the-loop metho