ﻻ يوجد ملخص باللغة العربية
The atmospheric neutrino flux represents a continuous source that can be exploited to infer properties about Cosmic Rays and neutrino oscillation physics. The JUNO observatory, a 20 kt liquid scintillator currently under construction in China, will be able to detect atmospheric neutrinos , given the large fiducial volume and the excellent energy resolution. The light produced in neutrino interactions will be collected by a double-system of photosensors: about 18.000 20 PMTs and about 25.000 3 PMTs. The rock overburden above the experimental hall is around 700 m and the experiment is expected to complete construction in 2021. In this study, the JUNO performances in reconstructing the atmospheric neutrino spectrum have been evaluated. The different time evolution of scintillation light on the PMTs allows to discriminate the flavor of the primary neutrinos. To reconstruct the time pattern of events, the signals from 3 PMTs only have been used, because of the small time resolution. A probabilistic unfolding method has been used, in order to infer the primary neutrino energy spectrum by looking at the detector output. The simulated spectrum has been reconstructed between 100 MeV and 10 GeV, showing a great potential of the detector in the atmospheric low energy region. The uncertainties on the final flux, including both statistic and the systematic contributions, range between 10% and 25%, with the best performances obtained at the GeV.
Neutrino oscillations have been probed during the last few decades using multiple neutrino sources and experimental set-ups. In the recent years, very large volume neutrino telescopes have started contributing to the field. First ANTARES and then Ice
The ordering of the neutrino mass eigenstates is one of the fundamental open questions in neutrino physics. While current-generation neutrino oscillation experiments are able to produce moderate indications on this ordering, upcoming experiments of t
Atmospheric neutrinos are one of the most relevant natural neutrino sources that can be exploited to infer properties about Cosmic Rays and neutrino oscillations. The Jiangmen Underground Neutrino Observatory (JUNO) experiment, a 20 kton liquid scint
We present a measurement of neutrino oscillations via atmospheric muon neutrino disappearance with three years of data of the completed IceCube neutrino detector. DeepCore, a region of denser instrumentation, enables the detection and reconstruction
Cosmic Ray and neutrino oscillation physics can be studied by using atmospheric neutrinos. JUNO (Jiangmen Underground Neutrino Observatory) is a large liquid scintillator detector with low energy detection threshold and excellent energy resolution. T