ﻻ يوجد ملخص باللغة العربية
The heavy quark effective field theory (HQEFT) provides an effective way to deal with the heavy meson decays. In the paper, we adopt two different correlators to derive the light-cone sum rules of the $B to pi$ transition form factors (TFFs) within the framework of HQEFT. We label those two LCSR results as LCSR-${cal U}$ and LCSR-${cal R}$, which are for conventional correlator and right-handed correlator, respectively. We observe that the correlation parameter $|rho_{rm RU}|$ for the branching ratio ${cal B}(B to pi l u_{l})$ is $sim 0.85$, implying the consistency of the LCSRs under different correlators. Moreover, we obtain $|V_{rm ub}|_{{rm LCSR}-{cal U}}=(3.45^{+0.28}_{-0.20}pm{0.13}_{rm{exp}})times10^{-3}$ and $|V_{rm ub}|_{{rm LCSR}-{cal R}} =(3.38^{+0.22}_{-0.16} pm{0.12}_{rm{exp}})times10^{-3}$. We then obtain $mathcal{R}_{pi}|_{{rm LCSR}-{cal U}}=0.68^{+0.10}_{-0.09}$ and $mathcal{R}_{pi}|_{{rm LCSR}-{cal R}}=0.65^{+0.13}_{-0.11}$, both of them agree with the Lattice QCD predictions. Thus the HQEFT provides a useful framework for studying the $B$ meson decays. Moreover, by using right-handed correlator, the twist-2 terms shall dominant the TFF $f^+(q^2)$, which approaches over $sim97%$ contribution in the whole $q^2$-region; and the large twist-3 uncertainty for the conventional correlator is greatly suppressed. One can thus adopt the LCSR-${cal R}$ prediction to test the properties of the various models for the pion twist-2 distribution amplitudes.
After improving the knowledge about residua of the semileptonic form factor at its first two poles we show that $f_+^{Dpi}(q^2)$ is not saturated when compared with the experimental data. To fill the difference we approximate the rest of discontinuit
The scaling behavior of semileptonic form-factors in Heavy to Light transitions is studied in the Heavy Quark Effective Theory. In the case of $Hrightarrow pi e u$ it is shown that the same scaling violations affecting the heavy meson decay constant will be present in the semileptonic form-factors.
We reconsider the QCD predictions for the radiative decay $Bto gamma ell u_ell$ with an energetic photon in the final state by taking into account the $1/E_gamma, 1/m_b$ power-suppressed hard-collinear and soft corrections from higher-twist $B$-meso
In this paper, we make a detailed study about the $Dto V$ helicity form factors (HFFs) within the framework of QCD light-cone sum rule (LCSR) up to twist-4 accuracy. After extrapolating the LCSR predictions of HFFs to the whole physical $q^2$-region,
We present a general study on exclusive semileptonic decays of heavy (B, D, B_s) to light (pi, rho, K, K^*) mesons in the framework of effective field theory of heavy quark. Transition matrix elements of these decays can be systematically characteriz