ترغب بنشر مسار تعليمي؟ اضغط هنا

Unknown Identity Rejection Loss: Utilizing Unlabeled Data for Face Recognition

96   0   0.0 ( 0 )
 نشر من قبل Yuanliu Liu
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Face recognition has advanced considerably with the availability of large-scale labeled datasets. However, how to further improve the performance with the easily accessible unlabeled dataset remains a challenge. In this paper, we propose the novel Unknown Identity Rejection (UIR) loss to utilize the unlabeled data. We categorize identities in unconstrained environment into the known set and the unknown set. The former corresponds to the identities that appear in the labeled training dataset while the latter is its complementary set. Besides training the model to accurately classify the known identities, we also force the model to reject unknown identities provided by the unlabeled dataset via our proposed UIR loss. In order to reject faces of unknown identities, centers of the known identities are forced to keep enough margin from centers of unknown identities which are assumed to be approximated by the features of their samples. By this means, the discriminativeness of the face representations can be enhanced. Experimental results demonstrate that our approach can provide obvious performance improvement by utilizing the unlabeled data.



قيم البحث

اقرأ أيضاً

In face recognition, designing margin-based (e.g., angular, additive, additive angular margins) softmax loss functions plays an important role in learning discriminative features. However, these hand-crafted heuristic methods are sub-optimal because they require much effort to explore the large design space. Recently, an AutoML for loss function search method AM-LFS has been derived, which leverages reinforcement learning to search loss functions during the training process. But its search space is complex and unstable that hindering its superiority. In this paper, we first analyze that the key to enhance the feature discrimination is actually textbf{how to reduce the softmax probability}. We then design a unified formulation for the current margin-based softmax losses. Accordingly, we define a novel search space and develop a reward-guided search method to automatically obtain the best candidate. Experimental results on a variety of face recognition benchmarks have demonstrated the effectiveness of our method over the state-of-the-art alternatives.
Face recognition has witnessed significant progresses due to the advances of deep convolutional neural networks (CNNs), the central challenge of which, is feature discrimination. To address it, one group tries to exploit mining-based strategies (text it{e.g.}, hard example mining and focal loss) to focus on the informative examples. The other group devotes to designing margin-based loss functions (textit{e.g.}, angular, additive and additive angular margins) to increase the feature margin from the perspective of ground truth class. Both of them have been well-verified to learn discriminative features. However, they suffer from either the ambiguity of hard examples or the lack of discriminative power of other classes. In this paper, we design a novel loss function, namely support vector guided softmax loss (SV-Softmax), which adaptively emphasizes the mis-classified points (support vectors) to guide the discriminative features learning. So the developed SV-Softmax loss is able to eliminate the ambiguity of hard examples as well as absorb the discriminative power of other classes, and thus results in more discrimiantive features. To the best of our knowledge, this is the first attempt to inherit the advantages of mining-based and margin-based losses into one framework. Experimental results on several benchmarks have demonstrated the effectiveness of our approach over state-of-the-arts.
Face recognition (FR) using deep convolutional neural networks (DCNNs) has seen remarkable success in recent years. One key ingredient of DCNN-based FR is the appropriate design of a loss function that ensures discrimination between various identitie s. The state-of-the-art (SOTA) solutions utilise normalised Softmax loss with additive and/or multiplicative margins. Despite being popular, these Softmax+margin based losses are not theoretically motivated and the effectiveness of a margin is justified only intuitively. In this work, we utilise an alternative framework that offers a more direct mechanism of achieving discrimination among the features of various identities. We propose a novel loss that is equivalent to a triplet loss with proxies and an implicit mechanism of hard-negative mining. We give theoretical justification that minimising the proposed loss ensures a minimum separability between all identities. The proposed loss is simple to implement and does not require heavy hyper-parameter tuning as in the SOTA solutions. We give empirical evidence that despite its simplicity, the proposed loss consistently achieves SOTA performance in various benchmarks for both high-resolution and low-resolution FR tasks.
While deep face recognition has benefited significantly from large-scale labeled data, current research is focused on leveraging unlabeled data to further boost performance, reducing the cost of human annotation. Prior work has mostly been in control led settings, where the labeled and unlabeled data sets have no overlapping identities by construction. This is not realistic in large-scale face recognition, where one must contend with such overlaps, the frequency of which increases with the volume of data. Ignoring identity overlap leads to significant labeling noise, as data from the same identity is split into multiple clusters. To address this, we propose a novel identity separation method based on extreme value theory. It is formulated as an out-of-distribution detection algorithm, and greatly reduces the problems caused by overlapping-identity label noise. Considering cluster assignments as pseudo-labels, we must also overcome the labeling noise from clustering errors. We propose a modulation of the cosine loss, where the modulation weights correspond to an estimate of clustering uncertainty. Extensive experiments on both controlled and real settings demonstrate our methods consistent improvements over supervised baselines, e.g., 11.6% improvement on IJB-A verification.
Face recognition has witnessed significant progress due to the advances of deep convolutional neural networks (CNNs), the central task of which is how to improve the feature discrimination. To this end, several margin-based (textit{e.g.}, angular, ad ditive and additive angular margins) softmax loss functions have been proposed to increase the feature margin between different classes. However, despite great achievements have been made, they mainly suffer from three issues: 1) Obviously, they ignore the importance of informative features mining for discriminative learning; 2) They encourage the feature margin only from the ground truth class, without realizing the discriminability from other non-ground truth classes; 3) The feature margin between different classes is set to be same and fixed, which may not adapt the situations very well. To cope with these issues, this paper develops a novel loss function, which adaptively emphasizes the mis-classified feature vectors to guide the discriminative feature learning. Thus we can address all the above issues and achieve more discriminative face features. To the best of our knowledge, this is the first attempt to inherit the advantages of feature margin and feature mining into a unified loss function. Experimental results on several benchmarks have demonstrated the effectiveness of our method over state-of-the-art alternatives.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا