ﻻ يوجد ملخص باللغة العربية
Small object tracking becomes an increasingly important task, which however has been largely unexplored in computer vision. The great challenges stem from the facts that: 1) small objects show extreme vague and variable appearances, and 2) they tend to be lost easier as compared to normal-sized ones due to the shaking of lens. In this paper, we propose a novel aggregation signature suitable for small object tracking, especially aiming for the challenge of sudden and large drift. We make three-fold contributions in this work. First, technically, we propose a new descriptor, named aggregation signature, based on saliency, able to represent highly distinctive features for small objects. Second, theoretically, we prove that the proposed signature matches the foreground object more accurately with a high probability. Third, experimentally, the aggregation signature achieves a high performance on multiple datasets, outperforming the state-of-the-art methods by large margins. Moreover, we contribute with two newly collected benchmark datasets, i.e., small90 and small112, for visually small object tracking. The datasets will be available in https://github.com/bczhangbczhang/.
We present an approach for aggregating a sparse set of views of an object in order to compute a semi-implicit 3D representation in the form of a volumetric feature grid. Key to our approach is an object-centric canonical 3D coordinate system into whi
Video objection detection (VID) has been a rising research direction in recent years. A central issue of VID is the appearance degradation of video frames caused by fast motion. This problem is essentially ill-posed for a single frame. Therefore, agg
This paper introduces temporally local metrics for Multi-Object Tracking. These metrics are obtained by restricting existing metrics based on track matching to a finite temporal horizon, and provide new insight into the ability of trackers to maintai
In recent years, object detection has experienced impressive progress. Despite these improvements, there is still a significant gap in the performance between the detection of small and large objects. We analyze the current state-of-the-art model, Ma
Recently, the Siamese-based method has stood out from multitudinous tracking methods owing to its state-of-the-art (SOTA) performance. Nevertheless, due to various special challenges in UAV tracking, textit{e.g.}, severe occlusion and fast motion, mo