ﻻ يوجد ملخص باللغة العربية
We provide some Liouville theorems for ancient nonnegative solutions of the heat equation on a complete non-compact Riemannian manifold with Ricci curvature bounded from below. We determine growth conditions ensuring triviality of the latters, showing their optimality through examples.
We consider harmonic functions of polynomial growth of some order $d$ on Cayley graphs of groups of polynomial volume growth of order $D$ w.r.t. the word metric and prove the optimal estimate for the dimension of the space of such harmonic functions.
We prove some Liouville type theorems on smooth compact Riemannian manifolds with nonnegative sectional curvature and strictly convex boundary. This gives a nonlinear generalization in low dimension of the recent sharp lower bound of the first Steklo
The sharp growth and distortion theorems are established for slice monogenic extensions of univalent functions on the unit disc $mathbb Dsubset mathbb C$ in the setting of Clifford algebras, based on a new convex combination identity. The analogous r
We prove Liouville theorems for Dirac-harmonic maps from the Euclidean space $R^n$, the hyperbolic space $H^n$ and a Riemannian manifold $mathfrak{S^n}$ ($ngeq 3$) with the Schwarzschild metric to any Riemannian manifold $N$.
In this paper, we establish several Liouville type theorems for entire solutions to fractional parabolic equations. We first obtain the key ingredients needed in the proof of Liouville theorems, such as narrow region principles and maximum principles