ترغب بنشر مسار تعليمي؟ اضغط هنا

(111)-oriented, single crystal diamond tips for nanoscale scanning probe imaging of out-of-plane magnetic fields

66   0   0.0 ( 0 )
 نشر من قبل Dominik Rohner
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an implementation of all-diamond scanning probes for scanning nitrogen-vacancy (NV) magnetometry fabricated from (111)-oriented diamond material. The realized scanning probe tips on average contain single NV spins, a quarter of which have their spin quantization axis aligned parallel to the tip direction. Such tips enable single-axis vector magnetic field imaging with nanoscale resolution, where the measurement axis is oriented normal to the scan plane. We discuss how these tips bring multiple practical advantages for NV magnetometry, in particular regarding quantitative analysis of the resulting data. We further demonstrate the beneficial optical properties of NVs oriented along the tip direction, such as polarization-insensitive excitation, which simplifies optical setups needed for NV magnetometry. Our results will be impactful for scanning NV magnetometry in general and for applications in spintronics and the investigation of thin film magnets in particular.



قيم البحث

اقرأ أيضاً

The detection of ensembles of spins under ambient conditions has revolutionized the biological, chemical, and physical sciences through magnetic resonance imaging and nuclear magnetic resonance. Pushing sensing capabilities to the individual-spin lev el would enable unprecedented applications such as single molecule structural imaging; however, the weak magnetic fields from single spins are undetectable by conventional far-field resonance techniques. In recent years, there has been a considerable effort to develop nanoscale scanning magnetometers, which are able to measure fewer spins by bringing the sensor in close proximity to its target. The most sensitive of these magnetometers generally require low temperatures for operation, but measuring under ambient conditions (standard temperature and pressure) is critical for many imaging applications, particularly in biological systems. Here we demonstrate detection and nanoscale imaging of the magnetic field from a single electron spin under ambient conditions using a scanning nitrogen-vacancy (NV) magnetometer. Real-space, quantitative magnetic-field images are obtained by deterministically scanning our NV magnetometer 50 nanometers above a target electron spin, while measuring the local magnetic field using dynamically decoupled magnetometry protocols. This single-spin detection capability could enable single-spin magnetic resonance imaging of electron spins on the nano- and atomic scales and opens the door for unique applications such as mechanical quantum state transfer.
Diamond is a material of choice in the pursuit of integrated quantum photonic technologies. So far, the majority of photonic devices fabricated from diamond, are made from (100)-oriented crystals. In this work, we demonstrate a methodology for the fa brication of optically-active membranes from (111)-oriented diamond. We use a liftoff technique to generate membranes, followed by chemical vapour deposition of diamond in the presence of silicon to generate homogenous silicon vacancy colour centers with emission properties that are superior to those in (100)-oriented diamond. We further use the diamond membranes to fabricate high quality microring resonators with quality factors exceeding ~ 3000. Supported by finite difference time domain calculations, we discuss the advantages of (111) oriented structures as building blocks for quantum nanophotonic devices.
The negatively-charged nitrogen-vacancy center (NV) in diamond forms a versatile system for quantum sensing applications. Combining the advantageous properties of this atomic-sized defect with scanning probe techniques such as atomic force microscopy (AFM) enables nanoscale imaging of e.g. magnetic fields. To form a scanning probe device, we place single NVs shallowly (i.e. < 20 nm) below the top facet of a diamond nanopillar, which is located on a thin diamond platform of typically below 1 mu m thickness. This device can be attached to an AFM head, forming an excellent scanning probe tip. Furthermore, it simultaneously influences the collectible photoluminescence (PL) rate of the NV located inside. Especially sensing protocols using continuous optically-detected magnetic resonance (ODMR) benefit from an enhanced collectible PL rate, improving the achievable sensitivity. This work presents a comprehensive set of simulations to quantify the influence of the device geometry on the collectible PL rate for individual NVs. Besides geometric parameters (e.g. pillar length, diameter and platform thickness), we also focus on fabrication uncertainties such as the exact position of the NV or the taper geometry of the pillar introduced by imperfect etching. As a last step, we use these individual results to optimize our current device geometry, yielding a realistic gain in collectible PL rate by a factor of 13 compared to bulk diamond and 1.8 compared to our unoptimized devices.
The electronic spin of the nitrogen vacancy (NV) center in diamond forms an atomically sized, highly sensitive sensor for magnetic fields. To harness the full potential of individual NV centers for sensing with high sensitivity and nanoscale spatial resolution, NV centers have to be incorporated into scanning probe structures enabling controlled scanning in close proximity to the sample surface. Here, we present an optimized procedure to fabricate single-crystal, all-diamond scanning probes starting from commercially available diamond and show a highly efficient and robust approach for integrating these devices in a generic atomic force microscope. Our scanning probes consisting of a scanning nanopillar (200 nm diameter, $1-2,mu$m length) on a thin ($< 1mu$m) cantilever structure, enable efficient light extraction from diamond in combination with a high magnetic field sensitivity ($mathrm{eta_{AC}}approx50pm20,mathrm{nT}/sqrt{mathrm{Hz}}$). As a first application of our scanning probes, we image the magnetic stray field of a single Ni nanorod. We show that this stray field can be approximated by a single dipole and estimate the NV-to-sample distance to a few tens of nanometer, which sets the achievable resolution of our scanning probes.
Magnetic microscopy that combines nanoscale spatial resolution with picosecond scale temporal resolution uniquely enables direct observation of the spatiotemporal magnetic phenomena that are relevant to future high-speed, high-density magnetic storag e and logic technologies. Magnetic microscopes that combine these metrics has been limited to facility-level instruments. To address this gap in lab-accessible spatiotemporal imaging, we develop a time-resolved near-field magnetic microscope based on magneto-thermal interactions. We demonstrate both magnetization and current density imaging modalities, each with spatial resolution that far surpasses the optical diffraction limit. In addition, we study the near-field and time-resolved characteristics of our signal and find that our instrument possesses a spatial resolution on the scale of 100 nm and a temporal resolution below 100 ps. Our results demonstrate an accessible and comparatively low-cost approach to nanoscale spatiotemporal magnetic microscopy in a table-top form to aid the science and technology of dynamic magnetic devices with complex spin textures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا