ﻻ يوجد ملخص باللغة العربية
It is known that intra-layer adaptive coupling among connected oscillators instigates explosive synchronization (ES) in multilayer networks. Taking an altogether different cue in the present work, we consider inter-layer adaptive coupling in a multiplex network of phase oscillators and show that the scheme gives rise to ES with an associated hysteresis irrespective of the network architecture of individual layers. The hysteresis is shaped by the inter-layer coupling strength and the frequency mismatch between the mirror nodes. We provide rigorous mean-field analytical treatment for the measure of global coherence and manifest they are in a good match with respective numerical assessments. Moreover, the analytical predictions provide a complete insight into how adaptive multiplexing suppresses the formation of a giant cluster, eventually giving birth to ES. The study will help in spotlighting the role of multiplexing in the emergence of ES in real-world systems represented by multilayer architecture. Particularly, it is relevant to those systems which have limitations towards change in intra-layer coupling strength.
This Letter investigates the nature of synchronization in multilayered and multiplexed populations in which the interlayer interactions are randomly pinned. First, we show that a multilayer network constructed by setting up all-to-all interlayer conn
Inter-layer synchronization is a dynamical state occurring in multi-layer networks composed of identical nodes. The state corresponds to have all layers synchronized, with nodes in each layer which do not necessarily evolve in unison. So far, the stu
We show that an introduction of a phase parameter ($alpha$), with $0 le alpha le pi/2$, in the interlayer coupling terms of multiplex networks of Kuramoto oscillators can induce explosive synchronization (ES) in the multiplexed layers. Along with the
The phenomenon of explosive synchronization, which originates from hypersensitivity to small perturbation caused by some form of frustration prevailed in various physical and biological systems, has been shown to lead events of cascading failure of t
Percolation and synchronization are two phase transitions that have been extensively studied since already long ago. A classic result is that, in the vast majority of cases, these transitions are of the second-order type, i.e. continuous and reversib