ﻻ يوجد ملخص باللغة العربية
It is commonly anticipated that an insulating state collapses in favor of an emergent metallic state at high pressures as the unit cell shrinks and the electronic bandwidth broadens to fill the insulating energy band gap. Here we report a rare insulating state that persists up to at least 185 GPa in the antiferromagnetic iridate Sr2IrO4, which is the archetypical spin-orbit-driven Jeff = 1/2 insulator. This study shows the electrical resistance of single-crystal Sr2IrO4 initially decreases with applied pressure, reaches a minimum in the range, 32 - 38 GPa, then abruptly rises to fully recover the insulating state with further pressure increases up to 185 GPa. Our synchrotron x-ray diffraction and Raman scattering data show the onset of the rapid increase in resistance is accompanied by a structural phase transition from the native tetragonal I41/acd phase to an orthorhombic Pbca phase (with much reduced symmetry) at 40.6 GPa. The clear-cut correspondence of these two anomalies is key to understanding the stability of the insulating state at megabar pressures: Pressure-induced, severe structural distortions prevent the expected metallization, despite the 26% volume compression attained at the highest pressure accessed in this study. Moreover, the resistance of Sr2IrO4 remains stable while the applied pressure is tripled from 61 GPa to 185 GPa. These results suggest that a novel type of electronic Coulomb correlation compensates the anticipated band broadening in strongly spin-orbit-coupled materials at megabar pressures.
Iridium-based 5d transition-metal oxides are attractive candidates for the study of correlated electronic states due to the interplay of enhanced crystal-field, Coulomb and spin-orbit interaction energies. At ambient pressure, these conditions promot
Spin-orbit entangled magnetic dipoles, often referred to as pseudospins, provide a new avenue to explore novel magnetism inconceivable in the weak spin-orbit coupling limit, but the nature of their low-energy interactions remains to be understood. We
We performed resonant x-ray diffraction experiments at the $L$ absorption edges for the post-perovskite-type compound CaIrO$_{3}$ with $(t_{2g})^5$ electronic configuration. By observing the magnetic signals, we could clearly see that the magnetic st
The spin texture of the metallic two-dimensional electron system (root3 x root3)-Au/Ge(111) is revealed by fully three-dimensional spin-resolved photoemission, as well as by density functional calculations. The large hexagonal Fermi surface, generate
We investigate topological transport in a spin-orbit coupled bosonic Mott insulator. We show that interactions can lead to anomalous quasi-particle dynamics even when the spin-orbit coupling is abelian. To illustrate the latter, we consider the spin-