ﻻ يوجد ملخص باللغة العربية
In this paper we present a model for the hidden Markovian bandit problem with linear rewards. As opposed to current work on Markovian bandits, we do not assume that the state is known to the decision maker before making the decision. Furthermore, we assume structural side information where the decision maker knows in advance that there are two types of hidden states; one is common to all arms and evolves according to a Markovian distribution, and the other is unique to each arm and is distributed according to an i.i.d. process that is unique to each arm. We present an algorithm and regret analysis to this problem. Surprisingly, we can recover the hidden states and maintain logarithmic regret in the case of a convex polytope action set. Furthermore, we show that the structural side information leads to expected regret that does not depend on the number of extreme points in the action space. Therefore, we obtain practical solutions even in high dimensional problems.
We propose a bandit algorithm that explores purely by randomizing its past observations. In particular, the sufficient optimism in the mean reward estimates is achieved by exploiting the variance in the past observed rewards. We name the algorithm Ca
This paper proposes using the uncertainty of information (UoI), measured by Shannons entropy, as a metric for information freshness. We consider a system in which a central monitor observes multiple binary Markov processes through a communication cha
Restless and collapsing bandits are commonly used to model constrained resource allocation in settings featuring arms with action-dependent transition probabilities, such as allocating health interventions among patients [Whittle, 1988; Mate et al.,
We study a novel variant of online finite-horizon Markov Decision Processes with adversarially changing loss functions and initially unknown dynamics. In each episode, the learner suffers the loss accumulated along the trajectory realized by the poli
Restless Multi-Armed Bandits (RMABs) have been popularly used to model limited resource allocation problems. Recently, these have been employed for health monitoring and intervention planning problems. However, the existing approaches fail to account