ترغب بنشر مسار تعليمي؟ اضغط هنا

Alma Reveals A Gas-rich, Maximum-starburst In The Hyperluminous, Dust-obscured Quasar W0533-3401 AT $zsim2.9$

66   0   0.0 ( 0 )
 نشر من قبل Lulu Fan
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Lulu Fan




اسأل ChatGPT حول البحث

We present ALMA observations and multiwavelength spectral energy distribution (SED) analysis in a WISE-selected, hyperluminous dust-obscured quasar W0533-3401 at $z=2.9$. We derive its physical properties of each component, such as molecular gas, stars, dust and the central supermassive black hole (SMBH). Both the dust continuum at 3 mm and the CO(3-2) line are detected. The derived molecular gas mass $M_{rm gas}=8.4times10^{10} M_odot$ and its fraction $f_{rm gas}=0.7$ suggest that W0533-3401 is gas-rich. The star formation rate (SFR) has been estimated to be $sim3000-7000 M_odot$ yr$^{-1}$ by using different methods. The high values of SFR and specific SFR suggest that W0533-3401 is a maximum-starburst. The corresponding gas depletion timescales are very short ($t_{rm depl}sim12-28$ Myr). The CO(3-2) emission line is marginally resolved and has a velocity gradient, which is possibly due to a rotating gas disk, gas outflow or merger. Finally, we infer the black hole mass growth rate of W0533-3401 (${dot{M}}_{rm BH}$ = 49 $M_odot$ yr$^{-1}$), which suggests a rapid growth of the central SMBH. The observed black hole to stellar mass ratio $M_{rm BH}/M_star$ of W0533-3401, which is dependent on the adopted Eddington ratio, is over one order of magnitude higher than the local value, and is evolving towards the evolutionary trend of unobscured quasars. Our results are consistent with the scenario that wobs, with both a gas-rich maximum-starburst and a rapid black hole growth, is experiencing a short transition phase towards an unobscured quasar.



قيم البحث

اقرأ أيضاً

We present the first X-ray spectrum of a Hot dust-obscured galaxy (DOG), namely W1835+4355 at z ~ 2.3. Hot DOGs represent a very rare population of hyperluminous (>= 10^47 erg/s), dust-enshrouded objects at z > 2 recently discovered in the WISE All S ky Survey. The 40 ks XMM-Newton spectrum reveals a continuum as flat (Gamma ~ 0.8) as typically seen in heavily obscured AGN. This, along with the presence of strong Fe Kalpha emission, clearly suggests a reflection-dominated spectrum due to Compton-thick absorption. In this scenario, the observed luminosity of L(2-10 keV) ~ 2 x 10^44 erg/s is a fraction (<10%) of the intrinsic one, which is estimated to be >~ 5 x 10^45 erg/s by using several proxies. The Herschel data allow us to constrain the SED up to the sub-mm band, providing a reliable estimate of the quasar contribution (~ 75%) to the IR luminosity as well as the amount of star formation (~ 2100 Msun/yr). Our results thus provide additional pieces of evidence that associate Hot DOGs with an exceptionally dusty phase during which luminous quasars and massive galaxies co-evolve and a very efficient and powerful AGN-driven feedback mechanism is predicted by models.
In this work we report the discovery of the hyperluminous galaxy HELP_J100156.75+022344.7 at the photometric redshift of z ~ 4.3. The galaxy was discovered in the Cosmological Evolution Survey (COSMOS) field, one of the fields studied by the Herschel Extragalactic Legacy Project (HELP). We present the spectral energy distribution (SED) of the galaxy and fit it with the CYprus models for Galaxies and their NUclear Spectra (CYGNUS) multi-component radiative transfer models. We find that its emission is dominated by an obscured quasar with a predicted total 1-1000um luminosity of $3.91^{+1.69}_{-0.55} times 10^{13} L_odot$ and an active galactic nucleus (AGN) fraction of ~89%. We also fit HELP_J100156.75+022344.7 with the Code Investigating GALaxy Emission (CIGALE) code and find a similar result. This is only the second z > 4 hyperluminous obscured quasar discovered to date. The discovery of HELP_J100156.75+022344.7 in the ~ 2deg^2 COSMOS field implies that a large number of obscured hyperluminous quasars may lie in the HELP fields which cover ~ 1300deg^2. If this is confirmed, tension between supermassive black hole evolution models and observations will be alleviated. We estimate the space density of objects like HELP_J100156.75+022344.7 at z ~ 4.5 to be $sim 1.8 times 10^{-8}$Mpc$^{-3}$. This is slightly higher than the space density of coeval hyperluminous optically selected quasars suggesting that the obscuring torus in z > 4 quasars may have a covering factor $gtrsim 50%$.
353 - Lulu Fan 2020
WISE J224607.56$-$052634.9 (W2246-0526) is a hyperluminous ($L_{rm bol}approx 1.7times 10^{14}~L_odot$), dust-obscured and radio-quiet quasar at redshift $z=4.6$. It plays a key role in probing the transition stage between dusty starbursts and unobsc ured quasars in the co-evolution of galaxies and supermassive black holes (SMBHs). To search for the evidence of the jet activity launched by the SMBH in W2246-0526, we performed very long baseline interferometry (VLBI) observations of its radio counterpart with the European VLBI Network (EVN) plus the enhanced Multi Element Remotely Linked Interferometer Network (e-MERLIN) at 1.66 GHz and the Very Long Baseline Array (VLBA) at 1.44 and 1.66 GHz. The deep EVN plus e-MERLIN observations detect a compact (size $leq32$ pc) sub-mJy component contributing about ten percent of its total flux density, which spatially coincides with the peak of dust continuum and [C II] emissions. Together with its relatively high brightness temperature ($geq8times10^{6}$ K), we interpret the component as a consequence of non-thermal radio activity powered by the central SMBH, which likely originates from a stationary jet base. The resolved-out radio emission possibly come from a diffuse jet, quasar-driven winds, or both, while the contribution by star formation activity is negligible. Moreover, we propose an updated geometry structure of its multi-wavelength active nucleus and shed light on the radio quasar selection bias towards the blazars at $z>4$.
Massive present-day early-type (elliptical and lenticular) galaxies probably gained the bulk of their stellar mass and heavy elements through intense, dust-enshrouded starbursts - that is, increased rates of star formation - in the most massive dark matter halos at early epochs. However, it remains unknown how soon after the Big Bang such massive starburst progenitors exist. The measured redshift distribution of dusty, massive starbursts has long been suspected to be biased low in redshift owing to selection effects, as confirmed by recent findings of systems out to redshift z~5. Here we report the identification of a massive starburst galaxy at redshift 6.34 through a submillimeter color-selection technique. We unambiguously determined the redshift from a suite of molecular and atomic fine structure cooling lines. These measurements reveal a hundred billion solar masses of highly excited, chemically evolved interstellar medium in this galaxy, which constitutes at least 40% of the baryonic mass. A maximum starburst converts the gas into stars at a rate more than 2,000 times that of the Milky Way, a rate among the highest observed at any epoch. Despite the overall downturn of cosmic star formation towards the highest redshifts, it seems that environments mature enough to form the most massive, intense starbursts existed at least as early as 880 million years after the Big Bang.
We present new detections of the CO(5-4), CO(7-6), [CI](1-0) and [CI](2-1) molecular and atomic line transitions towards the unlensed, obscured quasar AMS12 (z=2.7672), observed with the IRAM PdBI. This is the first unlensed, high redshift source to have both [CI] transitions detected. Continuum measurements between 70 $mu$m and 3 mm are used to constrain the FIR SED, and we find a best fit FIR luminosity of log[Lfir/Lsol] = 13.5+/-0.1, dust temperature T_d = 88+/-8 K and emissivity index {beta} = 0.6+/-0.1. The highly-excited molecular gas probed by CO(3-2), (5-4) and (7-6), is modelled with large velocity gradient (LVG) models. The gas kinetic temperature T_g, density n(H2), and the characteristic size r0, are determined using the dust temperature from the FIR SED as a prior for the gas temperature. The best fitting parameters are T_g = 90+/-8 K, n(H2) = 10^(3.9+/-0.1) cm^(-3) and r0 = 0.8+/-0.04 kpc. The ratio of the [CI] lines gives a [CI] excitation temperature of 43+/-10 K, indicating the [CI] and the high-excitation CO are not in thermal equilibrium. The [CI] excitation temperature is below that of T_d and T_g of the high-excitation CO, perhaps because [CI] lies at a larger radius where there may also be a large reservoir of CO at a cooler temperature, perhaps detectable through the CO(1-0). Using the [CI](1-0) line we can estimate the strength of the CO(1-0) line and hence the gas mass. This suggests that a significant fraction (~30%) of the molecular gas is missed from the high-excitation line analysis. The Eddington limited black hole mass is found from the bolometric luminosity to be Mbh >~ 1.5x10^9 Msol. Along with the stellar mass of 3x10^11 Msol, these give a black hole - bulge mass ratio of Mbh/Mbulge >~ 0.005. This is in agreement with studies on the evolution of the Mbh/Mbulge relationship at high redshifts, which find a departure from the local value ~0.002.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا