ﻻ يوجد ملخص باللغة العربية
Femtosecond laser pulses can induce ultrafast demagnetization as well as generate bursts of hot electron spin currents. In trilayer spin valves consisting of two metallic ferromagnetic layers separated by a nonmagnetic one, hot electron spin currents excited by an ultrashort laser pulse propagate from the first ferromagnetic layer through the spacer reaching the second magnetic layer. When the magnetizations of the two magnetic layers are noncollinear, this spin current exerts a torque on magnetic moments in the second ferromagnet. Since this torque is acting only within the sub-ps timescale, it excites coherent high-frequency magnons as recently demonstrated in experiments. Here, we calculate the temporal shape of the hot electron spin currents using the superdiffusive transport model and simulate the response of the magnetic system to the resulting ultrashort spin-transfer torque pulse by means of atomistic spin-dynamics simulations. Our results confirm that the acting spin-current pulse is short enough to excite magnons with frequencies beyond 1 THz, a frequency range out of reach for current induced spin-transfer torques. We demonstrate the formation of thickness dependent standing spin waves during the first picoseconds after laser excitation. In addition, we vary the penetration depth of the spin-transfer torque to reveal its influence on the excited magnons. Our simulations clearly show a suppression effect of magnons with short wavelengths already for penetration depths in the range of 1 nm confirming experimental findings reporting penetration depths below $2, {rm nm}$.
We report on the impact of nonlinear four-magnon scattering on magnon transport in microstructured Co25Fe75 waveguides with low magnetic damping. We determine the magnon propagation length with microfocused Brillouin light scattering over a broad ran
Antiferromagnetic materials are outstanding candidates for next generation spintronic applications, because their ultrafast spin dynamics makes it possible to realize several orders of magnitude higher-speed devices than conventional ferromagnetic ma
Electric current exerts torques-so-called spin transfer torques (STTs)-on magnetic domain walls (DWs), resulting in DW motion. At low current densities, the STTs should compete against disorders in ferromagnetic nanowires but the nature of the compet
Ultrafast demagnetization of magnetic layers pumped by a femtosecond laser pulse is accompanied by a nonthermal spin-polarized current of hot electrons. These spin currents are studied here theoretically in a spin valve with noncollinear magnetizatio
Magnetic excitation in a spin dimer system on a bilayer honeycomb lattice is investigated in the presence of a zigzag edge, where disordered and ordered phases can be controlled by a quantum phase transition. In analogy with the case of graphene with