ﻻ يوجد ملخص باللغة العربية
Biomedical text tagging systems are plagued by the dearth of labeled training data. There have been recent attempts at using pre-trained encoders to deal with this issue. Pre-trained encoder provides representation of the input text which is then fed to task-specific layers for classification. The entire network is fine-tuned on the labeled data from the target task. Unfortunately, a low-resource biomedical task often has too few labeled instances for satisfactory fine-tuning. Also, if the label space is large, it contains few or no labeled instances for majority of the labels. Most biomedical tagging systems treat labels as indexes, ignoring the fact that these labels are often concepts expressed in natural language e.g. `Appearance of lesion on brain imaging. To address these issues, we propose constructing extra labeled instances using label-text (i.e. labels name) as input for the corresponding label-index (i.e. labels index). In fact, we propose a number of strategies for manufacturing multiple artificial labeled instances from a single label. The network is then fine-tuned on a combination of real and these newly constructed artificial labeled instances. We evaluate the proposed approach on an important low-resource biomedical task called textit{PICO annotation}, which requires tagging raw text describing clinical trials with labels corresponding to different aspects of the trial i.e. PICO (Population, Intervention/Control, Outcome) characteristics of the trial. Our empirical results show that the proposed method achieves a new state-of-the-art performance for PICO annotation with very significant improvements over competitive baselines.
The massive growth of digital biomedical data is making biomedical text indexing and classification increasingly important. Accordingly, previous research has devised numerous deep learning techniques focused on using feedforward, convolutional or re
Inductive transfer learning has greatly impacted computer vision, but existing approaches in NLP still require task-specific modifications and training from scratch. We propose Universal Language Model Fine-tuning (ULMFiT), an effective transfer lear
Fine-tuning is known to improve NLP models by adapting an initial model trained on more plentiful but less domain-salient examples to data in a target domain. Such domain adaptation is typically done using one stage of fine-tuning. We demonstrate tha
While large-scale pretrained language models have obtained impressive results when fine-tuned on a wide variety of tasks, they still often suffer from overfitting in low-resource scenarios. Since such models are general-purpose feature extractors, ma
Data augmentation techniques have been widely used to improve machine learning performance as they enhance the generalization capability of models. In this work, to generate high quality synthetic data for low-resource tagging tasks, we propose a nov