ترغب بنشر مسار تعليمي؟ اضغط هنا

Attribute-aware Pedestrian Detection in a Crowd

165   0   0.0 ( 0 )
 نشر من قبل Jialiang Zhang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Pedestrian detection is an initial step to perform outdoor scene analysis, which plays an essential role in many real-world applications. Although having enjoyed the merits of deep learning frameworks from the generic object detectors, pedestrian detection is still a very challenging task due to heavy occlusion and highly crowded group. Generally, the conventional detectors are unable to differentiate individuals from each other effectively under such a dense environment. To tackle this critical problem, we propose an attribute-aware pedestrian detector to explicitly model peoples semantic attributes in a high-level feature detection fashion. Besides the typical semantic features, center position, targets scale and offset, we introduce a pedestrian-oriented attribute feature to encode the high-level semantic differences among the crowd. Moreover, a novel attribute-feature-based Non-Maximum Suppression~(NMS) is proposed to distinguish the person from a highly overlapped group by adaptively rejecting the false-positive results in a very crowd settings. Furthermore, a novel ground truth target is designed to alleviate the difficulties caused by the attribute configuration and extremely class imbalance issues during training. Finally, we evaluate our proposed attribute-aware pedestrian detector on two benchmark datasets including CityPersons and CrowdHuman. The experimental results show that our approach outperforms state-of-the-art methods at a large margin on pedestrian detection.



قيم البحث

اقرأ أيضاً

Pedestrian detection in crowd scenes poses a challenging problem due to the heuristic defined mapping from anchors to pedestrians and the conflict between NMS and highly overlapped pedestrians. The recently proposed end-to-end detectors(ED), DETR and deformable DETR, replace hand designed components such as NMS and anchors using the transformer architecture, which gets rid of duplicate predictions by computing all pairwise interactions between queries. Inspired by these works, we explore their performance on crowd pedestrian detection. Surprisingly, compared to Faster-RCNN with FPN, the results are opposite to those obtained on COCO. Furthermore, the bipartite match of ED harms the training efficiency due to the large ground truth number in crowd scenes. In this work, we identify the underlying motives driving EDs poor performance and propose a new decoder to address them. Moreover, we design a mechanism to leverage the less occluded visible parts of pedestrian specifically for ED, and achieve further improvements. A faster bipartite match algorithm is also introduced to make ED training on crowd dataset more practical. The proposed detector PED(Pedestrian End-to-end Detector) outperforms both previous EDs and the baseline Faster-RCNN on CityPersons and CrowdHuman. It also achieves comparable performance with state-of-the-art pedestrian detection methods. Code will be released soon.
In this paper, we aim to improve the dataset foundation for pedestrian attribute recognition in real surveillance scenarios. Recognition of human attributes, such as gender, and clothes types, has great prospects in real applications. However, the de velopment of suitable benchmark datasets for attribute recognition remains lagged behind. Existing human attribute datasets are collected from various sources or an integration of pedestrian re-identification datasets. Such heterogeneous collection poses a big challenge on developing high quality fine-grained attribute recognition algorithms. Furthermore, human attribute recognition are generally severely affected by environmental or contextual factors, such as viewpoints, occlusions and body parts, while existing attribute datasets barely care about them. To tackle these problems, we build a Richly Annotated Pedestrian (RAP) dataset from real multi-camera surveillance scenarios with long term collection, where data samples are annotated with not only fine-grained human attributes but also environmental and contextual factors. RAP has in total 41,585 pedestrian samples, each of which is annotated with 72 attributes as well as viewpoints, occlusions, body parts information. To our knowledge, the RAP dataset is the largest pedestrian attribute dataset, which is expected to greatly promote the study of large-scale attribute recognition systems. Furthermore, we empirically analyze the effects of different environmental and contextual factors on pedestrian attribute recognition. Experimental results demonstrate that viewpoints, occlusions and body parts information could assist attribute recognition a lot in real applications.
Label assignment has been widely studied in general object detection because of its great impact on detectors performance. However, none of these works focus on label assignment in dense pedestrian detection. In this paper, we propose a simple yet ef fective assigning strategy called Loss-aware Label Assignment (LLA) to boost the performance of pedestrian detectors in crowd scenarios. LLA first calculates classification (cls) and regression (reg) losses between each anchor and ground-truth (GT) pair. A joint loss is then defined as the weighted summation of cls and reg losses as the assigning indicator. Finally, anchors with top K minimum joint losses for a certain GT box are assigned as its positive anchors. Anchors that are not assigned to any GT box are considered negative. Loss-aware label assignment is based on an observation that anchors with lower joint loss usually contain richer semantic information and thus can better represent their corresponding GT boxes. Experiments on CrowdHuman and CityPersons show that such a simple label assigning strategy can boost MR by 9.53% and 5.47% on two famous one-stage detectors - RetinaNet and FCOS, respectively, demonstrating the effectiveness of LLA.
Pedestrian attribute recognition aims to assign multiple attributes to one pedestrian image captured by a video surveillance camera. Although numerous methods are proposed and make tremendous progress, we argue that it is time to step back and analyz e the status quo of the area. We review and rethink the recent progress from three perspectives. First, given that there is no explicit and complete definition of pedestrian attribute recognition, we formally define and distinguish pedestrian attribute recognition from other similar tasks. Second, based on the proposed definition, we expose the limitations of the existing datasets, which violate the academic norm and are inconsistent with the essential requirement of practical industry application. Thus, we propose two datasets, PETAtextsubscript{$ZS$} and RAPtextsubscript{$ZS$}, constructed following the zero-shot settings on pedestrian identity. In addition, we also introduce several realistic criteria for future pedestrian attribute dataset construction. Finally, we reimplement existing state-of-the-art methods and introduce a strong baseline method to give reliable evaluations and fair comparisons. Experiments are conducted on four existing datasets and two proposed datasets to measure progress on pedestrian attribute recognition.
Pedestrian attribute recognition in surveillance scenarios is still a challenging task due to inaccurate localization of specific attributes. In this paper, we propose a novel view-attribute localization method based on attention (VALA), which relies on the strong relevance between attributes and views to capture specific view-attributes and to localize attribute-corresponding areas by attention mechanism. A specific view-attribute is composed by the extracted attribute feature and four view scores which are predicted by view predictor as the confidences for attribute from different views. View-attribute is then delivered back to shallow network layers for supervising deep feature extraction. To explore the location of a view-attribute, regional attention is introduced to aggregate spatial information of the input attribute feature in height and width direction for constraining the image into a narrow range. Moreover, the inter-channel dependency of view-feature is embedded in the above two spatial directions. An attention attribute-specific region is gained after fining the narrow range by balancing the ratio of channel dependencies between height and width branches. The final view-attribute recognition outcome is obtained by combining the output of regional attention with the view scores from view predictor. Experiments on three wide datasets (RAP, RAPv2, PETA, and PA-100K) demonstrate the effectiveness of our approach compared with state-of-the-art methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا