ﻻ يوجد ملخص باللغة العربية
Pedestrian detection is an initial step to perform outdoor scene analysis, which plays an essential role in many real-world applications. Although having enjoyed the merits of deep learning frameworks from the generic object detectors, pedestrian detection is still a very challenging task due to heavy occlusion and highly crowded group. Generally, the conventional detectors are unable to differentiate individuals from each other effectively under such a dense environment. To tackle this critical problem, we propose an attribute-aware pedestrian detector to explicitly model peoples semantic attributes in a high-level feature detection fashion. Besides the typical semantic features, center position, targets scale and offset, we introduce a pedestrian-oriented attribute feature to encode the high-level semantic differences among the crowd. Moreover, a novel attribute-feature-based Non-Maximum Suppression~(NMS) is proposed to distinguish the person from a highly overlapped group by adaptively rejecting the false-positive results in a very crowd settings. Furthermore, a novel ground truth target is designed to alleviate the difficulties caused by the attribute configuration and extremely class imbalance issues during training. Finally, we evaluate our proposed attribute-aware pedestrian detector on two benchmark datasets including CityPersons and CrowdHuman. The experimental results show that our approach outperforms state-of-the-art methods at a large margin on pedestrian detection.
Pedestrian detection in crowd scenes poses a challenging problem due to the heuristic defined mapping from anchors to pedestrians and the conflict between NMS and highly overlapped pedestrians. The recently proposed end-to-end detectors(ED), DETR and
In this paper, we aim to improve the dataset foundation for pedestrian attribute recognition in real surveillance scenarios. Recognition of human attributes, such as gender, and clothes types, has great prospects in real applications. However, the de
Label assignment has been widely studied in general object detection because of its great impact on detectors performance. However, none of these works focus on label assignment in dense pedestrian detection. In this paper, we propose a simple yet ef
Pedestrian attribute recognition aims to assign multiple attributes to one pedestrian image captured by a video surveillance camera. Although numerous methods are proposed and make tremendous progress, we argue that it is time to step back and analyz
Pedestrian attribute recognition in surveillance scenarios is still a challenging task due to inaccurate localization of specific attributes. In this paper, we propose a novel view-attribute localization method based on attention (VALA), which relies