ﻻ يوجد ملخص باللغة العربية
We study Random Walks in an i.i.d. Random Environment (RWRE) defined on $b$-regular trees. We prove a functional central limit theorem (FCLT) for transient processes, under a moment condition on the environment. We emphasize that we make no uniform ellipticity assumptions. Our approach relies on regenerative levels, i.e. levels that are visited exactly once. On the way, we prove that the distance between consecutive regenerative levels have a geometrically decaying tail. In the second part of this paper, we apply our results to Linearly Edge-Reinforced Random Walk (LERRW) to prove FCLT when the process is defined on $b$-regular trees, with $ b ge 4$, substantially improving the results of the first author (see Theorem 3 of Collevecchio (2006)).
We consider branching random walks in $d$-dimensional integer lattice with time-space i.i.d. offspring distributions. When $d ge 3$ and the fluctuation of the environment is well moderated by the random walk, we prove a central limit theorem for the
We prove a quenched central limit theorem for random walks in i.i.d. weakly elliptic random environments in the ballistic regime. Such theorems have been proved recently by Rassoul-Agha and Seppalainen in [10] and Berger and Zeitouni in [2] under the
We consider the limit behavior of an excited random walk (ERW), i.e., a random walk whose transition probabilities depend on the number of times the walk has visited to the current state. We prove that an ERW being naturally scaled converges in distr
We obtain Central Limit Theorems in Functional form for a class of time-inhomogeneous interacting random walks on the simplex of probability measures over a finite set. Due to a reinforcement mechanism, the increments of the walks are correlated, for
We consider branching random walks in $d$-dimensional integer lattice with time-space i.i.d. offspring distributions. This model is known to exhibit a phase transition: If $d ge 3$ and the environment is not too random, then, the total population gro