ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast Security-Constrained Optimal Power Flow through Low-Impact and Redundancy Screening

150   0   0.0 ( 0 )
 نشر من قبل Robert Mieth
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Determining contingency aware dispatch decisions by solving a security-constrained optimal power flow (SCOPF) is challenging for real-world power systems, as the high problem dimensionality often leads to impractical computational requirements. This problem becomes more severe when the SCOPF has to be solved not only for a single instance, but for multiple periods, e.g. in the context of electricity market analyses. This paper proposes an algorithm that identifies the minimal set of constraints that exactly define the space of feasible nodal injections for a given network and contingency scenarios. By internalizing the technical limits of the nodal injections and enforcing a minimal worst-case impact of contingencies to line flows, computational effort can be further improved. The case study applies and analyzes the methods on the IEEE 118 and A&M 2000 bus systems, as well as the German and European transmission systems. In all tested cases the proposed algorithm identifies at least 95% of the network and security constraints as redundant, leading to significant SCOPF solve time reductions. Scalability and practical implementation are explicitly discussed. The code and input data of the case study is published supplementary to the paper under an open-source license.



قيم البحث

اقرأ أيضاً

This paper proposes a robust transient stability constrained optimal power flow problem that addresses renewable uncertainties by the coordination of generation re-dispatch and power flow router (PFR) tuning.PFR refers to a general type of network-si de controller that enlarges the feasible region of the OPF problem. The coordination between network-side and generator-side control in the proposed model is more general than the traditional methods which focus on generation dispatch only. An offline-online solution framework is developed to solve the problem efficiently. Under this framework the original problem is significantly simplified, so that we only need to solve a low-dimensional deterministic problem at the online stage to achieve real-time implementation with a high robustness level. The proposed method is verified on the modified New England 39-bus system. Numerical results demonstrate that the proposed method is efficient and shows good performance on economy and robustness.
High penetration of renewable generation poses great challenge to power system operation due to its uncertain nature. In droop-controlled microgrids, the voltage volatility induced by renewable uncertainties is aggravated by the high droop gains. Thi s paper proposes a chance-constrained optimal power flow (CC-OPF) problem with power flow routers (PFRs) to better regulate the voltage profile in microgrids. PFR refer to a general type of network-side controller that brings more flexibility to the power network. Comparing with the normal CC-OPF that relies on power injection flexibility only, the proposed model introduces a new dimension of control from power network to enhance system performance under renewable uncertainties. Since the inclusion of PFRs complicates the problem and makes common solvers no longer apply directly, we design an iterative solution algorithm. For the subproblem in each iteration, chance constraints are transformed into equivalent deterministic ones via sensitivity analysis, so that the subproblem can be efficiently solved by the convex relaxation method. The proposed method is verified on the modified IEEE 33-bus system and the results show that PFRs make a significant contribution to mitigating the voltage volatility and make the system operate in a more economic and secure way.
128 - Ren Hu , Qifeng Li 2021
The uncertainty of multiple power loads and re-newable energy generations in power systems increases the complexity of power flow analysis for decision-makers. The chance-constraint method can be applied to model the optimi-zation problems of power f low with uncertainty. This paper develops a novel solution approach for chance-constrained AC optimal power flow (CCACOPF) problem based on the da-ta-driven convexification of power flow and the fast algorithm for scenario technique (FAST). This method is computationally effective for mainly two reasons. First, the original nonconvex AC power flow constraints are approximated by a set of learn-ing-based quadratic convex ones. Second, FAST is a more ad-vanced distribution-free scenario-based solution method using far less scenarios than the conventional one, retaining a high confidence level. Eventually, the CCACOPF is converted into a computationally tractable convex optimization problem. The simulation results on IEEE test cases indicate that 1) the pro-posed solution method can excel the conventional one and ro-bust program in computational efficiency, 2) the data-driven convexification of power flow is effective in approximating original complex AC power flow.
Distribution grid agents are obliged to exchange and disclose their states explicitly to neighboring regions to enable distributed optimal power flow dispatch. However, the states contain sensitive information of individual agents, such as voltage an d current measurements. These measurements can be inferred by adversaries, such as other participating agents or eavesdroppers. To address the issue, we propose a privacy-preserving distributed optimal power flow (OPF) algorithm based on partially homomorphic encryption (PHE). First of all, we exploit the alternating direction method of multipliers (ADMM) to solve the OPF in a distributed fashion. In this way, the dual update of ADMM can be encrypted by PHE. We further relax the augmented term of the primal update of ADMM with the $ell_1$-norm regularization. In addition, we transform the relaxed ADMM with the $ell_1$-norm regularization to a semidefinite program (SDP), and prove that this transformation is exact. The SDP can be solved locally with only the sign messages from neighboring agents, which preserves the privacy of the primal update. At last, we strictly prove the privacy preservation guarantee of the proposed algorithm. Numerical case studies validate the effectiveness and exactness of the proposed approach.
For optimal power flow problems with chance constraints, a particularly effective method is based on a fixed point iteration applied to a sequence of deterministic power flow problems. However, a priori, the convergence of such an approach is not nec essarily guaranteed. This article analyses the convergence conditions for this fixed point approach, and reports numerical experiments including for large IEEE networks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا