ﻻ يوجد ملخص باللغة العربية
In this fourth paper of the series, we use the parametrized, spherically symmetric explosion method PUSH to perform a systematic study of two sets of non-rotating stellar progenitor models. Our study includes pre-explosion models with metallicities Z=0 and Z=Z$_{odot}times 10^{-4}$ and covers a progenitor mass range from 11 up to 75 M$_odot$. We present and discuss the explosion properties of all models and predict remnant (neutron star or black hole) mass distributions within this approach. We also perform systematic nucleosynthesis studies and predict detailed isotopic yields as function of the progenitor mass and metallicity. We present a comparison of our nucleosynthesis results with observationally derived $^{56}$Ni ejecta from normal core-collapse supernovae and with iron-group abundances for metal-poor star HD~84937. Overall, our results for explosion energies, remnant mass distribution, $^{56}$Ni mass, and iron group yields are consistent with observations of normal CCSNe. We find that stellar progenitors at low and zero metallicity are more prone to BH formation than those at solar metallicity, which allows for the formation of BHs in the mass range observed by LIGO/VIRGO.
Core-collapse supernovae (CCSNe) are the extremely energetic deaths of massive stars. They play a vital role in the synthesis and dissemination of many heavy elements in the universe. In the past, CCSN nucleosynthesis calculations have relied on arti
In a previously presented proof-of-principle study, we established a parametrized spherically symmetric explosion method (PUSH) that can reproduce many features of core-collapse supernovae for a wide range of pre-explosion models. The method is based
In a previously presented proof-of-principle study we established a parametrized spherically symmetric explosion method (PUSH) that can reproduce many features of core-collapse supernovae. The present paper goes beyond a specific application that is
Motivated by observations of supernova SN 1987A, various authors have simulated Rayleigh-Taylor (RT) instabilities in the envelopes of core collapse supernovae (for a review, see Mueller 1998). The non-radial motion found in these simulations qualita
Core-collapse supernovae are the first polluters of heavy elements in the galactic history. As such, it is important to study the nuclear compositions of their ejecta, and understand their dependence on the progenitor structure (e.g., mass, compactne