ﻻ يوجد ملخص باللغة العربية
Radiomics analysis has achieved great success in recent years. However, conventional Radiomics analysis suffers from insufficiently expressive hand-crafted features. Recently, emerging deep learning techniques, e.g., convolutional neural networks (CNNs), dominate recent research in Computer-Aided Diagnosis (CADx). Unfortunately, as black-box predictors, we argue that CNNs are diagnosing voxels (or pixels), rather than lesions; in other words, visual saliency from a trained CNN is not necessarily concentrated on the lesions. On the other hand, classification in clinical applications suffers from inherent ambiguities: radiologists may produce diverse diagnosis on challenging cases. To this end, we propose a controllable and explainable {em Probabilistic Radiomics} framework, by combining the Radiomics analysis and probabilistic deep learning. In our framework, 3D CNN feature is extracted upon lesion region only, then encoded into lesion representation, by a controllable Non-local Shape Analysis Module (NSAM) based on self-attention. Inspired from variational auto-encoders (VAEs), an Ambiguity PriorNet is used to approximate the ambiguity distribution over human experts. The final diagnosis is obtained by combining the ambiguity prior sample and lesion representation, and the whole network named $DenseSharp^{+}$ is end-to-end trainable. We apply the proposed method on lung nodule diagnosis on LIDC-IDRI database to validate its effectiveness.
We propose an auto-encoding network architecture for point clouds (PC) capable of extracting shape signatures without supervision. Building on this, we (i) design a loss function capable of modelling data variance on PCs which are unstructured, and (
Early diagnosis of lung cancer is a key intervention for the treatment of lung cancer computer aided diagnosis (CAD) can play a crucial role. However, most published CAD methods treat lung cancer diagnosis as a lung nodule classification problem, whi
Sepsis is a leading cause of mortality and critical illness worldwide. While robust biomarkers for early diagnosis are still missing, recent work indicates that hyperspectral imaging (HSI) has the potential to overcome this bottleneck by monitoring m
Background and Objective:Computer-aided diagnosis (CAD) systems promote diagnosis effectiveness and alleviate pressure of radiologists. A CAD system for lung cancer diagnosis includes nodule candidate detection and nodule malignancy evaluation. Recen
Quantification of anatomical shape changes currently relies on scalar global indexes which are largely insensitive to regional or asymmetric modifications. Accurate assessment of pathology-driven anatomical remodeling is a crucial step for the diagno