ﻻ يوجد ملخص باللغة العربية
Complex fluids containing low concentrations of slender colloidal rods can display a high viscosity, while little flow is needed to thin the fluid. This feature makes slender rods essential constituents in industrial applications and biology. Though this behaviour strongly depends on the rod-length, so far no direct relation could be identified. We employ a library of filamentous viruses to study the effect of rod size and flexibility on the zero-shear viscosity and shear-thinning behaviour. Rheology and small angle neutron scattering data are compared to a revised version of the standard theory for ideally stiff rods, which incorporates a complete shear-induced dilation of the confinement. While the earlier predicted length-independent pre-factor of the restricted rotational diffusion coefficient is confirmed by varying the length and concentration of the rods, the revised theory correctly predicts the shear thinning behaviour as well as the underlying orientational order. These results can be directly applied to understand the manifold systems based on rod-like colloids and design new materials.
We assess the possibility of shear banding of semidilute rod-like colloidal suspensions under steady shear ow very close to the isotropic-nematic spinodal, using a combination of rheology, small angle neutron scattering, and laser Doppler velocimetry
In a microrheological set-up a single probe particle immersed in a complex fluid is exposed to a strong external force driving the system out of equilibrium. Here, we elaborate analytically the time-dependent response of a probe particle in a dilute
We use molecular dynamics computer simulations to investigate the relaxation dynamics of a simple model for a colloidal gel at a low volume fraction. We find that due to the presence of the open spanning network this dynamics shows at low temperature
We present simulations for the steady-shear rheology of a model adhesive dispersion. We vary the range of the attractive forces $u$ as well as the strength of the dissipation $b$. For large dissipative forces, the rheology is governed by the Weisenbe
Catalytic colloidal swimmers that propel due to self-generated fluid flows exhibit strong affinity for surfaces. We here report experimental measurements of significantly different velocities of such microswimmers in the vicinity of substrates made f