ﻻ يوجد ملخص باللغة العربية
Secure communication is a necessity. However, encryption is commonly only applied to the upper layers of the protocol stack. This exposes network information to eavesdroppers, including the channels type, data rate, protocol, and routing information. This may be solved by encrypting the physical layer, thereby securing all subsequent layers. In order for this method to be practical, the encryption must be quick, preserve bandwidth, and must also deal with the issues of noise mitigation and synchronization. In this paper, we present the Vernam Physical Signal Cipher (VPSC): a novel cipher which can encrypt the harmonic composition of any analog waveform. The VPSC accomplished this by applying a modified Vernam cipher to the signals frequency magnitudes and phases. This approach is fast and preserves the signals bandwidth. In the paper, we offer methods for noise mitigation and synchronization, and evaluate the VPSC over a noisy wireless channel with multi-path propagation interference.
While information-theoretic security is often associated with the one-time pad and quantum key distribution, noisy transport media leave room for classical techniques and even covert operation. Transit times across the public internet exhibit a degre
A revised version will be uploaded later. In this Letter, it is shown that the one-time-pad key in the Vernam cipher can be repeatedly used with unconditional security using quantum media. The security proof is given with two explicit protocols, and the error rate threshold is analyzed.
This paper studies the security of an image encryption scheme based on the Hill cipher and reports its following problems: 1) there is a simple necessary and sufficient condition that makes a number of secret keys invalid; 2) it is insensitive to the
Lightweight block ciphers have been widely used in applications such as RFID tags, IoTs, and network sensors. Among them, with comparable parameters, the Light Encryption Device (LED) block cipher achieves the smallest area. However, implementation o
Information security is of great importance for modern society with all things connected. Physical unclonable function (PUF) as a promising hardware primitive has been intensively studied for information security. However, the widely investigated sil