ترغب بنشر مسار تعليمي؟ اضغط هنا

Doping-dependent phonon anomaly and charge-order phenomena in the HgBa$_{2}$CuO$_{4+delta}$ and HgBa$_{2}$CaCu$_{2}$O$_{6+delta}$

204   0   0.0 ( 0 )
 نشر من قبل Yuan Li
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using resonant X-ray diffraction and Raman spectroscopy, we study charge correlations and lattice dynamics in two model cuprates, HgBa$_{2}$CuO$_{4+delta}$ and HgBa$_{2}$CaCu$_{2}$O$_{6+delta}$. We observe a maximum of the characteristic charge order temperature around the same hole concentration ($p approx 0.09$) in both compounds, and concomitant pronounced anomalies in the lattice dynamics that involve the motion of atoms in and/or adjacent to the CuO$_2$ layers. These anomalies are already present at room temperature, and therefore precede the formation of the static charge correlations, and we attribute them to an instability of the CuO$_2$ layers. Our finding implies that the charge order in the cuprates is an emergent phenomenon, driven by a fundamental variation in both lattice and electronic properties as a function of doping.



قيم البحث

اقرأ أيضاً

127 - Y. Itoh , T. Machi , A. Yamamoto 2017
The magnitude of the powder spin susceptibility of an optimally doped superconductor HgBa$_2$CuO$_{4+delta}$ (Hg1201) in the normal state is found to be nearly the same as that of La$_{2-x}$Sr$_{x}$CuO$_{4}$ near the optimally doped level. The Stoner enhancement factor of Hg1201 is larger than that of La$_{2-x}$Sr$_{x}$CuO$_{4}$. The magnitude correlation of the Stoner enhancement factor is inconsistent with the effect of the recent theoretical Coulomb repulsion between 3$d$ electrons and that of the superexchange intereraction of a charge transfer type.
HgBa$_{2}$CuO$_{4+delta}$ (Hg1201) has been shown to be a model cuprate for scattering, optical, and transport experiments, but angle-resolved photoemission spectroscopy (ARPES) data are still lacking owing to the absence of a charge-neutral cleavage plane. We report on progress in achieving the experimental conditions for which quasiparticles can be observed in the near-nodal region of the Fermi surface. The d-wave superconducting gap is measured and found to have a maximum of 39 meV. At low temperature, a kink is detected in the nodal dispersion at approximately 51 meV below the Fermi level, an energy that is different from other cuprates with comparable T$_c$. The superconducting gap, Fermi surface, and nodal band renormalization measured here provide a crucial momentum-space complement to other experimental probes.
74 - Y. Itoh , T. Machi , A. Yamamoto 2017
We estimated the ratios of $^{63}$Cu hyperfine coupling constants in the double-layer high-$T_mathrm{c}$ superconductor HgBa$_2$CaCu$_2$O$_{6+delta}$ from the anisotropies in Cu nuclear spin-lattice relaxation rates and spin Knight shifts to study th e nature of the ultraslow fluctuations causing the $T_2$ anomaly in the Cu nuclear spin-echo decay. The ultraslow fluctuations may come from uniform magnetic fluctuations spread around the wave vector $q$ = 0, otherwise the electric origins.
Various forms of spin and charge ordering have been identified in a wide range of cuprate superconducting materials, but whether these behaviors are ubiquitous phenomena is not established. In this work we focus on one of the simplest compounds, HgBa $_{2}$CuO$_{4+delta}$ (Hg1201), a superconductor with a high transition temperature, 97 K, having only a single layer and tetragonal structure, in contrast to one of the most extensively studied materials, YBa$_{2}$Cu$_{3}$O$_{6+y}$ (Y123). Using nuclear magnetic resonance we have discovered a coherent spatial modulation of both spin and charge that is temperature and magnetic field independent, in competition with superconductivity similar to other cuprates. However, there is no evidence for the magnetic field and temperature induced charge order observed in Y123. Electronic instabilities are a common feature of cuprates as in the present work on Hg1201, but their manifestations are not universal.
Phonons in nearly optimally doped HgBa$_2$CuO$_{4+delta}$ were studied by inelastic X-ray scattering. The dispersion of the low energy modes is well described by a shell model, while the Cu-O bond stretching mode at high energy shows strong softening towards the zone boundary, which deviates strongly from the model. This seems to be common in the hole-doped high-$T_mathrm{c}$ superconducting cuprates, and, based on this work, not related to a lattice distortion specific to each material.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا