ﻻ يوجد ملخص باللغة العربية
A three-step procedure is proposed in type IIA string theory to stabilize multiple moduli in a dS vacuum. The first step is to construct a progenitor model with a localized stable supersymmetric Minkowski vacuum, or a discrete set of such vacua. It can be done, for example, using two non-perturbative exponents in the superpotential for each modulus, as in the KL model. A large set of supersymmetric Minkowski vacua with strongly stabilized moduli is protected by a theorem on stability of these vacua in absence of flat directions. The second step involves a parametrically small downshift to a supersymmetric AdS vacuum, which can be achieved by a small change of the superpotential. The third step is an uplift to a dS vacuum with a positive cosmological constant using the $overline {D6}$-brane contribution. Stability of the resulting dS vacuum is inherited from the stability of the original supersymmetric Minkowski vacuum if the supersymmetry breaking in dS vacuum is parametrically small.
In this note we revisit some of the recent 10d and 4d arguments suggesting that uplifting of supersymmetric AdS vacua leads to flattening of the potential, preventing formation of dS vacua. We explain why the corresponding 10d approach is inconclusiv
The search for classically stable Type IIA de-Sitter vacua typically starts with an ansatz that gives Anti-de-Sitter supersymmetric vacua and then raises the cosmological constant by modifying the compactification. As one raises the cosmological cons
We construct AdS$_4$ flux vacua of type IIA string theory in the supergravity (large volume, small $g_s$) regime, including the backreaction of O6-planes. Our solutions are the localiz
It was shown in arXiv:1808.09428 that the modified 4d version of the KKLT model proposed in arXiv:1707.08678 is inconsistent for large values of the parameter $c$ advocated in arXiv:1707.08678, since there is a point in the moduli space where $|D_SW|
No-scale supergravity is the appropriate general framework for low-energy effective field theories derived from string theory. The simplest no-scale Kahler potential with a single chiral field corresponds to a compactification to flat Minkowski space