ترغب بنشر مسار تعليمي؟ اضغط هنا

A generalization of Rasmussens invariant, with applications to surfaces in some four-manifolds

66   0   0.0 ( 0 )
 نشر من قبل Ciprian Manolescu
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We extend the definition of Khovanov-Lee homology to links in connected sums of $S^1 times S^2$s, and construct a Rasmussen-type invariant for null-homologous links in these manifolds. For certain links in $S^1 times S^2$, we compute the invariant by reinterpreting it in terms of Hochschild homology. As applications, we prove inequalities relating the Rasmussen-type invariant to the genus of surfaces with boundary in the following four-manifolds: $B^2 times S^2$, $S^1 times B^3$, $mathbb{CP}^2$, and various connected sums and boundary sums of these. We deduce that Rasmussens invariant also gives genus bounds for surfaces inside homotopy 4-balls obtained from $B^4$ by Gluck twists. Therefore, it cannot be used to prove that such homotopy 4-balls are non-standard.



قيم البحث

اقرأ أيضاً

81 - Tadayuki Watanabe 2016
In this paper, it is explained that a topological invariant for 3-manifold $M$ with $b_1(M)=1$ can be constructed by applying Fukayas Morse homotopy theoretic approach for Chern--Simons perturbation theory to a local system on $M$ of rational functio ns associated to the free abelian covering of $M$. Our invariant takes values in Garoufalidis--Rozanskys space of Jacobi diagrams whose edges are colored by rational functions. It is expected that our invariant gives a lot of nontrivial finite type invariants of 3-manifolds.
129 - J. Scott Carter 2012
By 2-twist-spinning the knotted graph that represents the knotted handlebody $5_2$, we obtain a knotted foam in 4-dimensional space with a non-trivial quandle cocycle invariant.
Let $W$ be a compact smooth $4$-manifold that deformation retract to a PL embedded closed surface. One can arrange the embedding to have at most one non-locally-flat point, and near the point the topology of the embedding is encoded in the singularit y knot $K$. If $K$ is slice, then $W$ has a smooth spine, i.e., deformation retracts onto a smoothly embedded surface. Using the obstructions from the Heegaard Floer homology and the high-dimensional surgery theory, we show that $W$ has no smooth spines if $K$ is a knot with nonzero Arf invariant, a nontrivial L-space knot, the connected sum of nontrivial L-space knots, or an alternating knot of signature $<-4$. We also discuss examples where the interior of $W$ is negatively curved.
We prove a splicing formula for the LMO invariant, which is the universal finite-type invariant of rational homology $3$-spheres. Specifically, if a rational homology $3$-sphere $M$ is obtained by gluing the exteriors of two framed knots $K_1 subset M_1$ and $K_2subset M_2$ in rational homology $3$-spheres, our formula expresses the LMO invariant of $M$ in terms of the Kontsevich-LMO invariants of $(M_1,K_1)$ and $(M_2,K_2)$. The proof uses the techniques that Bar-Natan and Lawrence developed to obtain a rational surgery formula for the LMO invariant. In low degrees, we recover Fujitas formula for the Casson-Walker invariant and we observe that the second term of the Ohtsuki series is not additive under standard splicing. The splicing formula also works when each $M_i$ comes with a link $L_i$ in addition to the knot $K_i$, hence we get a satellite formula for the Kontsevich-LMO invariant.
292 - Tadayuki Watanabe 2012
We give a generalization of Fukayas Morse homotopy theoretic approach for 2-loop Chern--Simons perturbation theory to 3-valent graphs with arbitrary number of loops at least 2. We construct a sequence of invariants of integral homology 3-spheres with values in a space of 3-valent graphs (Jacobi diagrams or Feynman diagrams) by counting graphs in an integral homology 3-sphere satisfying certain condition described by a set of ordinary differential equations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا