ترغب بنشر مسار تعليمي؟ اضغط هنا

Piezoelectricity and Topological Quantum Phase Transitions in Two-Dimensional Spin-Orbit Coupled Crystals with Time-Reversal Symmetry

183   0   0.0 ( 0 )
 نشر من قبل Jiabin Yu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Finding new physical responses that signal topological quantum phase transitions is of both theoretical and experimental importance. Here, we demonstrate that the piezoelectric response can change discontinuously across a topological quantum phase transition in two-dimensional time-reversal invariant systems with spin-orbit coupling, thus serving as a direct probe of the transition. We study all gap closing cases for all 7 plane groups that allow non-vanishing piezoelectricity and find that any gap closing with 1 fine-tuning parameter between two gapped states changes either the $Z_2$ invariant or the locally stable valley Chern number. The jump of the piezoelectric response is found to exist for all these transitions, and we propose the HgTe/CdTe quantum well and BaMnSb$_2$ as two potential experimental platforms. Our work provides a general theoretical framework to classify topological quantum phase transitions and reveals their ubiquitous relation to the piezoelectric response.



قيم البحث

اقرأ أيضاً

Macroscopic two-dimensional sonic crystals with inversion symmetry are studied to reveal higher-order topological physics in classical wave systems. By tuning a single geometry parameter, the band topology of the bulk and the edges can be controlled simultaneously. The bulk band gap forms an acoustic analog of topological crystalline insulators with edge states which are gapped due to symmetry reduction on the edges. In the presence of mirror symmetry, the band topology of the edge states can be characterized by the Zak phase, illustrating the band topology in a hierarchy of dimensions, which is at the heart of higher-order topology. Moreover, the edge band gap can be closed without closing the bulk band gap, revealing an independent topological transition on the edges. The rich topological transitions in both bulk and edges can be well-described by the symmetry eigenvalues at the high-symmetry points in the bulk and surface Brillouin zones. We further analyze the higher-order topology in the shrunken sonic crystals where slightly different physics but richer corner and edge phenomena are revealed. In these systems, the rich, multidimensional topological transitions can be exploited for topological transfer among zero-, one- and two- dimensional acoustic modes by controlling the geometry.
We study a topological phase transition between a normal insulator and a quantum spin Hall insulator in two-dimensional (2D) systems with time-reversal and two-fold rotation symmetries. Contrary to the case of ordinary time-reversal invariant systems where a direct transition between two insulators is generally predicted, we find that the topological phase transition in systems with an additional two-fold rotation symmetry is mediated by an emergent stable two-dimensional Weyl semimetal phase between two insulators. Here the central role is played by the so-called space-time inversion symmetry, the combination of time-reversal and two-fold rotation symmetries, which guarantees the quantization of the Berry phase around a 2D Weyl point even in the presence of strong spin-orbit coupling. Pair-creation/pair-annihilation of Weyl points accompanying partner exchange between different pairs induces a jump of a 2D $Z_{2}$ topological invariant leading to a topological phase transition. According to our theory, the topological phase transition in HgTe/CdTe quantum well structure is mediated by a stable 2D Weyl semimetal phase since the quantum well, lacking inversion symmetry intrinsically, has two-fold rotation about the growth direction. Namely, the HgTe/CdTe quantum well can show 2D Weyl semimetallic behavior within a small but finite interval in the thickness of HgTe layers between a normal insulator and a quantum spin Hall insulator. We also propose that few-layer black phosphorus under perpendicular electric field is another candidate system to observe the unconventional topological phase transition mechanism accompanied by emerging 2D Weyl semimetal phase protected by space-time inversion symmetry.
We have experimentally studied the spin-induced time reversal symmetry (TRS) breaking as a function of the relative strength of the Zeeman energy (E_Z) and the Rashba spin-orbit interaction energy (E_SOI), in InGaAs-based 2D electron gases. We find t hat the TRS breaking saturates when E_Z becomes comparable to E_SOI. Moreover, we show that the spin-induced TRS breaking mechanism is a universal function of the ratio E_Z/E_SOI, within the experimental accuracy.
HgTe quantum wells possess remarkable physical properties as for instance the quantum spin Hall state and the single-valley analog of graphene, depending on their layer thicknesses and barrier composition. However, double HgTe quantum wells yet conta in more fascinating and still unrevealed features. Here we report on the study of the quantum phase transitions in tunnel-coupled HgTe layers separated by CdTe barrier. We demonstrate that this system has a 3/2 pseudo spin degree of freedom, which features a number of particular properties associated with the spin-dependent coupling between HgTe layers. We discover a specific metal phase arising in a wide range of HgTe and CdTe layer thicknesses, in which a gapless bulk and a pair of helical edge states coexist. This phase holds some properties of bilayer graphene such as an unconventional quantum Hall effect and an electrically-tunable band gap. In this bilayer graphene phase, electric field opens the band gap and drives the system into the quantum spin Hall state. Furthermore, we discover a new type of quantum phase transition arising from a mutual inversion between second electron- and hole-like subbands. This work paves the way towards novel materials based on multi-layered topological insulators.
We develop the high frequency expansion based on the Brillouin-Wigner (B-W) perturbation theory for driven systems with spin-orbit coupling which is applicable to the cases of silicene, germanene and stanene. We compute the effective Hamiltonian in t he zero photon subspace not only to order $O(omega^{-1})$, but by keeping all the important terms to order $O(omega^{-2})$, and obtain the photo-assisted correction terms to both the hopping and the spin-orbit terms, as well as new longer ranged hopping terms. We then use the effective static Hamiltonian to compute the phase diagram in the high frequency limit and compare it with the results of direct numerical computation of the Chern numbers of the Floquet bands, and show that at sufficiently large frequencies, the B-W theory high frequency expansion works well even in the presence of spin-orbit coupling terms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا