ترغب بنشر مسار تعليمي؟ اضغط هنا

On Completeness-aware Concept-Based Explanations in Deep Neural Networks

111   0   0.0 ( 0 )
 نشر من قبل Chih-Kuan Yeh
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Human explanations of high-level decisions are often expressed in terms of key concepts the decisions are based on. In this paper, we study such concept-based explainability for Deep Neural Networks (DNNs). First, we define the notion of completeness, which quantifies how sufficient a particular set of concepts is in explaining a models prediction behavior based on the assumption that complete concept scores are sufficient statistics of the model prediction. Next, we propose a concept discovery method that aims to infer a complete set of concepts that are additionally encouraged to be interpretable, which addresses the limitations of existing methods on concept explanations. To define an importance score for each discovered concept, we adapt game-theoretic notions to aggregate over sets and propose ConceptSHAP. Via proposed metrics and user studies, on a synthetic dataset with apriori-known concept explanations, as well as on real-world image and language datasets, we validate the effectiveness of our method in finding concepts that are both complete in explaining the decisions and interpretable. (The code is released at https://github.com/chihkuanyeh/concept_exp)



قيم البحث

اقرأ أيضاً

We show new connections between adversarial learning and explainability for deep neural networks (DNNs). One form of explanation of the output of a neural network model in terms of its input features, is a vector of feature-attributions. Two desirabl e characteristics of an attribution-based explanation are: (1) $textit{sparseness}$: the attributions of irrelevant or weakly relevant features should be negligible, thus resulting in $textit{concise}$ explanations in terms of the significant features, and (2) $textit{stability}$: it should not vary significantly within a small local neighborhood of the input. Our first contribution is a theoretical exploration of how these two properties (when using attributions based on Integrated Gradients, or IG) are related to adversarial training, for a class of 1-layer networks (which includes logistic regression models for binary and multi-class classification); for these networks we show that (a) adversarial training using an $ell_infty$-bounded adversary produces models with sparse attribution vectors, and (b) natural model-training while encouraging stable explanations (via an extra term in the loss function), is equivalent to adversarial training. Our second contribution is an empirical verification of phenomenon (a), which we show, somewhat surprisingly, occurs $textit{not only}$ $textit{in 1-layer networks}$, $textit{but also DNNs}$ $textit{trained on }$ $textit{standard image datasets}$, and extends beyond IG-based attributions, to those based on DeepSHAP: adversarial training with $ell_infty$-bounded perturbations yields significantly sparser attribution vectors, with little degradation in performance on natural test data, compared to natural training. Moreover, the sparseness of the attribution vectors is significantly better than that achievable via $ell_1$-regularized natural training.
Massive deployment of Graph Neural Networks (GNNs) in high-stake applications generates a strong demand for explanations that are robust to noise and align well with human intuition. Most existing methods generate explanations by identifying a subgra ph of an input graph that has a strong correlation with the prediction. These explanations are not robust to noise because independently optimizing the correlation for a single input can easily overfit noise. Moreover, they do not align well with human intuition because removing an identified subgraph from an input graph does not necessarily change the prediction result. In this paper, we propose a novel method to generate robust counterfactual explanations on GNNs by explicitly modelling the common decision logic of GNNs on similar input graphs. Our explanations are naturally robust to noise because they are produced from the common decision boundaries of a GNN that govern the predictions of many similar input graphs. The explanations also align well with human intuition because removing the set of edges identified by an explanation from the input graph changes the prediction significantly. Exhaustive experiments on many public datasets demonstrate the superior performance of our method.
Recurrent Neural Networks (RNNs) are often used for sequential modeling of adverse outcomes in electronic health records (EHRs) due to their ability to encode past clinical states. These deep, recurrent architectures have displayed increased performa nce compared to other modeling approaches in a number of tasks, fueling the interest in deploying deep models in clinical settings. One of the key elements in ensuring safe model deployment and building user trust is model explainability. Testing with Concept Activation Vectors (TCAV) has recently been introduced as a way of providing human-understandable explanations by comparing high-level concepts to the networks gradients. While the technique has shown promising results in real-world imaging applications, it has not been applied to structured temporal inputs. To enable an application of TCAV to sequential predictions in the EHR, we propose an extension of the method to time series data. We evaluate the proposed approach on an open EHR benchmark from the intensive care unit, as well as synthetic data where we are able to better isolate individual effects.
Despite their remarkable performance on a wide range of visual tasks, machine learning technologies often succumb to data distribution shifts. Consequently, a range of recent work explores techniques for detecting these shifts. Unfortunately, current techniques offer no explanations about what triggers the detection of shifts, thus limiting their utility to provide actionable insights. In this work, we present Concept Bottleneck Shift Detection (CBSD): a novel explainable shift detection method. CBSD provides explanations by identifying and ranking the degree to which high-level human-understandable concepts are affected by shifts. Using two case studies (dSprites and 3dshapes), we demonstrate how CBSD can accurately detect underlying concepts that are affected by shifts and achieve higher detection accuracy compared to state-of-the-art shift detection methods.
Emerging resistive random-access memory (ReRAM) has recently been intensively investigated to accelerate the processing of deep neural networks (DNNs). Due to the in-situ computation capability, analog ReRAM crossbars yield significant throughput imp rovement and energy reduction compared to traditional digital methods. However, the power hungry analog-to-digital converters (ADCs) prevent the practical deployment of ReRAM-based DNN accelerators on end devices with limited chip area and power budget. We observe that due to the limited bit-density of ReRAM cells, DNN weights are bit sliced and correspondingly stored on multiple ReRAM bitlines. The accumulated current on bitlines resulted by weights directly dictates the overhead of ADCs. As such, bitwise weight sparsity rather than the sparsity of the full weight, is desirable for efficient ReRAM deployment. In this work, we propose bit-slice L1, the first algorithm to induce bit-slice sparsity during the training of dynamic fixed-point DNNs. Experiment results show that our approach achieves 2x sparsity improvement compared to previous algorithms. The resulting sparsity allows the ADC resolution to be reduced to 1-bit of the most significant bit-slice and down to 3-bit for the others bits, which significantly speeds up processing and reduces power and area overhead.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا