ترغب بنشر مسار تعليمي؟ اضغط هنا

Tidal heating as a discriminator for horizons in extreme mass ratio inspirals

115   0   0.0 ( 0 )
 نشر من قبل Paolo Pani
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The defining feature of a classical black hole is being a perfect absorber. Any evidence showing otherwise would indicate a departure from the standard black-hole picture. Energy and angular momentum absorption by the horizon of a black hole is responsible for tidal heating in a binary. This effect is particularly important in the latest stages of an extreme mass ratio inspiral around a spinning supermassive object, one of the main targets of the future LISA mission. We study how this effect can be used to probe the nature of supermassive objects in a model independent way. We compute the orbital dephasing and the gravitational-wave signal emitted by a point particle in circular, equatorial motion around a spinning supermassive object to the leading order in the mass ratio. Absence of absorption by the central object can affect the gravitational-wave signal dramatically, especially at high spin. This effect will make it possible to put an unparalleled upper bound on the reflectivity of exotic compact objects, at the level of ${cal O}(0.01)%$. This stringent bound would exclude the possibility of observing echoes in the ringdown of a supermassive binary merger.



قيم البحث

اقرأ أيضاً

We describe a new class of resonances for extreme mass-ratio inspirals (EMRIs): tidal resonances, induced by the tidal field of nearby stars or stellar-mass black holes. A tidal resonance can be viewed as a general relativistic extension of the Kozai -Lidov resonances in Newtonian systems, and is distinct from the transient resonance already known for EMRI systems. Tidal resonances will generically occur for EMRIs. By probing their influence on the phase of an EMRI waveform, we can learn about the tidal environmental of the EMRI system, albeit at the cost of a more complicated waveform model. Observations by LISA of EMRI systems therefore have the potential to provide information about the distribution of stellar-mass objects near their host galactic-center black holes.
The inspiral of stellar-mass compact objects, like neutron stars or stellar-mass black holes, into supermassive black holes provides a wealth of information about the strong gravitational-field regime via the emission of gravitational waves. In order to detect and analyse these signals, accurate waveform templates which include the effects of the compact objects gravitational self-force are required. For computational efficiency, adiabatic templates are often used. These accurately reproduce orbit-averaged trajectories arising from the first-order self-force, but neglect other effects, such as transient resonances, where the radial and poloidal fundamental frequencies become commensurate. During such resonances the flux of gravitational waves can be diminished or enhanced, leading to a shift in the compact objects trajectory and the phase of the waveform. We present an evolution scheme for studying the effects of transient resonances and apply this to an astrophysically motivated population. We find that a large proportion of systems encounter a low-order resonance in the later stages of inspiral; however, the resulting effect on signal-to-noise recovery is small as a consequence of the low eccentricity of the inspirals. Neglecting the effects of transient resonances leads to a loss of 4% of detectable signals.
We compute adiabatic waveforms for extreme mass-ratio inspirals (EMRIs) by stitching together a long inspiral waveform from a sequence of waveform snapshots, each of which corresponds to a particular geodesic orbit. We show that the complicated total waveform can be regarded as a sum of voices. Each voice evolves in a simple way on long timescales, a property which can be exploited to efficiently produce waveform models that faithfully encode the properties of EMRI systems. We look at examples for a range of different orbital geometries: spherical orbits, equatorial eccentric orbits, and one example of generic (inclined and eccentric) orbits. To our knowledge, this is the first calculation of a generic EMRI waveform that uses strong-field radiation reaction. We examine waveforms in both the time and frequency domains. Although EMRIs evolve slowly enough that the stationary phase approximation (SPA) to the Fourier transform is valid, the SPA calculation must be done to higher order for some voices, since their instantaneous frequency can change from chirping forward ($dot f > 0$) to chirping backward ($dot f < 0$). The approach we develop can eventually be extended to more complete EMRI waveform models, for example to include effects neglected by the adiabatic approximation such as the conservative self force and spin-curvature coupling.
We describe a new kludge scheme to model the dynamics of generic extreme-mass-ratio inspirals (EMRIs; stellar compact objects spiraling into a spinning supermassive black hole) and their gravitational-wave emission. The Chimera scheme is a hybrid met hod that combines tools from different approximation techniques in General Relativity: (i) A multipolar, post-Minkowskian expansion for the far-zone metric perturbation (the gravitational waveforms) and for the local prescription of the self-force; (ii) a post-Newtonian expansion for the computation of the multipole moments in terms of the trajectories; and (iii) a BH perturbation theory expansion when treating the trajectories as a sequence of self-adjusting Kerr geodesics. The EMRI trajectory is made out of Kerr geodesic fragments joined via the method of osculating elements as dictated by the multipolar post-Minkowskian radiation-reaction prescription. We implemented the proper coordinate mapping between Boyer-Lindquist coordinates, associated with the Kerr geodesics, and harmonic coordinates, associated with the multipolar post-Minkowskian decomposition. The Chimera scheme is thus a combination of approximations that can be used to model generic inspirals of systems with extreme to intermediate mass ratios, and hence, it can provide valuable information for future space-based gravitational-wave observatories, like LISA, and even for advanced ground detectors. The local character in time of our multipolar post-Minkowskian self-force makes this scheme amenable to study the possible appearance of transient resonances in generic inspirals.
The extreme-mass-ratio inspirals (EMRIs) of stellar mass compact objects into massive black holes in the centres of galaxies are an important source of low-frequency gravitational waves for space-based detectors. We discuss the prospects for detectin g these sources with the evolved Laser Interferometer Space Antenna (eLISA), recently proposed as an ESA mission candidate under the name NGO. We show that NGO could observe a few tens of EMRIs over its two year mission lifetime at redshifts z < 0.5 and describe how the event rate changes under possible alternative specifications of the eLISA design.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا