ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring the Role of Common Model of Cognition in Designing Adaptive Coaching Interactions for Health Behavior Change

54   0   0.0 ( 0 )
 نشر من قبل Shiwali Mohan
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Shiwali Mohan




اسأل ChatGPT حول البحث

Our research aims to develop intelligent collaborative agents that are human-aware - they can model, learn, and reason about their human partners physiological, cognitive, and affective states. In this paper, we study how adaptive coaching interactions can be designed to help people develop sustainable healthy behaviors. We leverage the common model of cognition - CMC [26] - as a framework for unifying several behavior change theories that are known to be useful in human-human coaching. We motivate a set of interactive system desiderata based on the CMC-based view of behavior change. Then, we propose PARCoach - an interactive system that addresses the desiderata. PARCoach helps a trainee pick a relevant health goal, set an implementation intention, and track their behavior. During this process, the trainee identifies a specific goal-directed behavior as well as the situational context in which they will perform it. PARCcoach uses this information to send notifications to the trainee, reminding them of their chosen behavior and the context. We report the results from a 4-week deployment with 60 participants. Our results support the CMC-based view of behavior change and demonstrate that the desiderata for proposed interactive system design is useful in producing behavior change.



قيم البحث

اقرأ أيضاً

61 - R. Stuart Geiger 2017
Scholars and practitioners across domains are increasingly concerned with algorithmic transparency and opacity, interrogating the values and assumptions embedded in automated, black-boxed systems, particularly in user-generated content platforms. I r eport from an ethnography of infrastructure in Wikipedia to discuss an often understudied aspect of this topic: the local, contextual, learned expertise involved in participating in a highly automated social-technical environment. Today, the organizational culture of Wikipedia is deeply intertwined with various data-driven algorithmic systems, which Wikipedians rely on to help manage and govern the anyone can edit encyclopedia at a massive scale. These bots, scripts, tools, plugins, and dashboards make Wikipedia more efficient for those who know how to work with them, but like all organizational culture, newcomers must learn them if they want to fully participate. I illustrate how cultural and organizational expertise is enacted around algorithmic agents by discussing two autoethnographic vignettes, which relate my personal experience as a veteran in Wikipedia. I present thick descriptions of how governance and gatekeeping practices are articulated through and in alignment with these automated infrastructures. Over the past 15 years, Wikipedian veterans and administrators have made specific decisions to support administrative and editorial workflows with automation in particular ways and not others. I use these cases of Wikipedias bot-supported bureaucracy to discuss several issues in the fields of critical algorithms studies, critical data studies, and fairness, accountability, and transparency in machine learning -- most principally arguing that scholarship and practice must go beyond trying to open up the black box of such systems and also examine sociocultural processes like newcomer socialization.
In the age of big data, companies and governments are increasingly using algorithms to inform hiring decisions, employee management, policing, credit scoring, insurance pricing, and many more aspects of our lives. AI systems can help us make evidence -driven, efficient decisions, but can also confront us with unjustified, discriminatory decisions wrongly assumed to be accurate because they are made automatically and quantitatively. It is becoming evident that these technological developments are consequential to peoples fundamental human rights. Despite increasing attention to these urgent challenges in recent years, technical solutions to these complex socio-ethical problems are often developed without empirical study of societal context and the critical input of societal stakeholders who are impacted by the technology. On the other hand, calls for more ethically- and socially-aware AI often fail to provide answers for how to proceed beyond stressing the importance of transparency, explainability, and fairness. Bridging these socio-technical gaps and the deep divide between abstract value language and design requirements is essential to facilitate nuanced, context-dependent design choices that will support moral and social values. In this paper, we bridge this divide through the framework of Design for Values, drawing on methodologies of Value Sensitive Design and Participatory Design to present a roadmap for proactively engaging societal stakeholders to translate fundamental human rights into context-dependent design requirements through a structured, inclusive, and transparent process.
66 - Yuanbang Li 2021
With the widespread use of mobile phones, users can share their location and activity anytime, anywhere, as a form of check in data. These data reflect user features. Long term stable, and a set of user shared features can be abstracted as user roles . The role is closely related to the users social background, occupation, and living habits. This study provides four main contributions. Firstly, user feature models from different views for each user are constructed from the analysis of check in data. Secondly, K Means algorithm is used to discover user roles from user features. Thirdly, a reinforcement learning algorithm is proposed to strengthen the clustering effect of user roles and improve the stability of the clustering result. Finally, experiments are used to verify the validity of the method, the results of which show the effectiveness of the method.
This paper presents a design of a non-player character (AI) for promoting balancedness in use of body segments when engaging in full-body motion gaming. In our experiment, we settle a battle between the proposed AI and a player by using FightingICE, a fighting game platform for AI development. A middleware called UKI is used to allow the player to control the game by using body motion instead of the keyboard and mouse. During gameplay, the proposed AI analyze health states of the player; it determines its next action by predicting how each candidate action, recommended by a Monte-Carlo tree search algorithm, will induce the player to move, and how the players health tends to be affected. Our result demonstrates successful improvement in balancedness in use of body segments on 4 out of 5 subjects.
The work presented in this paper aims to explore how, and to what extent, an adaptive robotic coach has the potential to provide extra motivation to adhere to long-term rehabilitation and help fill the coaching gap which occurs during repetitive solo practice in high performance sport. Adapting the behavior of a social robot to a specific user, using reinforcement learning (RL), could be a way of increasing adherence to an exercise routine in both domains. The requirements gathering phase is underway and is presented in this paper along with the rationale of using RL in this context.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا