ترغب بنشر مسار تعليمي؟ اضغط هنا

Chandra Observations of the Spectacular A3411-12 Merger Event

78   0   0.0 ( 0 )
 نشر من قبل Felipe Andrade-Santos
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present deep Chandra observations of A3411-12, a remarkable merging cluster that hosts the most compelling evidence for electron re-acceleration at cluster shocks to date. Using the $Y_X-M$ scaling relation, we find $r_{500} sim 1.3$ Mpc, $M_{500} = (7.1 pm 0.7) times 10^{14} M_{rm{odot}}$, $kT=6.5pm 0.1$ keV, and a gas mass of $M_{rm g,500} = (9.7 pm 0.1) times 10^{13} M_odot$. The gas mass fraction within $r_{500}$ is $f_{rm g} = 0.14 pm 0.01$. We compute the shock strength using density jumps to conclude that the Mach number of the merging subcluster is small ($M leq 1.15_{-0.09}^{+0.14}$). We also present pseudo-density, projected temperature, pseudo-pressure, and pseudo-entropy maps. Based on the pseudo-entropy map we conclude that the cluster is undergoing a mild merger, consistent with the small Mach number. On the other hand, radio relics extend over Mpc scale in the A3411-12 system, which strongly suggests that a population of energetic electrons already existed over extended regions of the cluster.



قيم البحث

اقرأ أيضاً

The HST Frontier Fields cluster MACS J1149.6+2223 is one of the most complex merging clusters, believed to consist of four dark matter halos. We present results from deep (365 ks) Chandra observations of the cluster, which reveal the most distant col d front (z=0.544) discovered to date. In the cluster outskirts, we also detect hints of a surface brightness edge that could be the bow shock preceding the cold front. The substructure analysis of the cluster identified several components with large relative radial velocities, thus indicating that at least some collisions occur almost along the line of sight. The inclination of the mergers with respect to the plane of the sky poses significant observational challenges at X-ray wavelengths. MACS J1149.6+2223 possibly hosts a steep-spectrum radio halo. If the steepness of the radio halo is confirmed, then the radio spectrum, combined with the relatively regular ICM morphology, could indicate that MACS J1149.6+2223 is an old merging cluster.
We present 35 ks Chandra ACIS observations of the 42 Myr old radio pulsar PSR B1451-68. A point source is detected 0.32 +/- 0.73 from the expected radio pulsar position. It has ~200 counts in the 0.3-8 keV energy range. We identify this point source as the X-ray counterpart of the radio pulsar. PSR B1451-68 is located close to a 2MASS point source, for which we derive 7% as the upper limit on the flux contribution to the measured pulsar X-ray flux. The pulsar spectrum can be described by either a power-law model with photon index Gamma=2.4 (+0.4/-0.3) and a unrealistically high absorbing column density N(H)= (2.5 (+1.2/-1.3)) * 10^(21) cm^-2, or by a combination of a kT=0.35 (+0.12/-0.07) keV blackbody and a Gamma = 1.4 +/- 0.5 power-law component for N(H)[DM]= 2.6 * 10^(20) cm^-2, estimated from the pulsar dispersion measure. At the parallactic, Lutz-Kelker bias corrected distance of 480 pc, the non-thermal X-ray luminosities in the 0.3-8 keV energy band are either Lx(nonth)= (11.3 +/- 1.7) * 10^(29) erg/s or Lx(nonth)= (5.9 (+4.9/-5.0)) * 10^(29) erg/s, respectively. This corresponds to non-thermal X-ray efficiencies of either eta(nonth)= Lx(nonth) / (dE/dt) ~ 0.005 or 0.003, respectively.
We report the first plausible optical electromagnetic (EM) counterpart to a (candidate) binary black hole (BBH) merger. Detected by the Zwicky Transient Facility (ZTF), the EM flare is consistent with expectations for a kicked BBH merger in the accre tion disk of an active galactic nucleus (AGN), and is unlikely ($<O(0.01%$)) due to intrinsic variability of this source. The lack of color evolution implies that it is not a supernovae and instead is strongly suggestive of a constant temperature shock. Other false-positive events, such as microlensing or a tidal disruption event, are ruled out or constrained to be $<O(0.1%$). If the flare is associated with S190521g, we find plausible values of: total mass $ M_{rm BBH} sim 100 M_{odot}$, kick velocity $v_k sim 200, {rm km}, {rm s}^{-1}$ at $theta sim 60^{circ}$ in a disk with aspect ratio $H/a sim 0.01$ (i.e., disk height $H$ at radius $a$) and gas density $rho sim 10^{-10}, {rm g}, {rm cm}^{-3}$. The merger could have occurred at a disk migration trap ($a sim 700, r_{g}$; $r_g equiv G M_{rm SMBH} / c^2$, where $M_{rm SMBH}$ is the mass of the AGN supermassive black hole). The combination of parameters implies a significant spin for at least one of the black holes in S190521g. The timing of our spectroscopy prevents useful constraints on broad-line asymmetry due to an off-center flare. We predict a repeat flare in this source due to a re-encountering with the disk in $sim 1.6, {rm yr}, (M_{rm SMBH}/10^{8}M_{odot}), (a/10^{3}r_{g})^{3/2}$.
We present radio observations of the tidal disruption event candidate (TDE) XMMSL1 J0740$-$85 spanning 592 to 875 d post X-ray discovery. We detect radio emission that fades from an initial peak flux density at 1.6 GHz of $1.19pm 0.06$ mJy to $0.65pm 0.06$ mJy suggesting an association with the TDE. This makes XMMSL1 J0740$-$85 at $d=75$ Mpc the nearest TDE with detected radio emission to date and only the fifth TDE with radio emission overall. The observed radio luminosity rules out a powerful relativistic jet like that seen in the relativistic TDE Swift J1644+57. Instead we infer from an equipartition analysis that the radio emission most likely arises from a non-relativistic outflow similar to that seen in the nearby TDE ASASSN-14li, with a velocity of about $10^4$ km s$^{-1}$ and a kinetic energy of about $10^{48}$ erg, expanding into a medium with a density of about $10^2$ cm$^{-3}$. Alternatively, the radio emission could arise from a weak initially-relativistic but decelerated jet with an energy of $sim 2times 10^{50}$ erg, or (for an extreme disruption geometry) from the unbound debris. The radio data for XMMSL1 J0740$-$85 continues to support the previous suggestion of a bimodal distribution of common non-relativistic isotropic outflows and rare relativistic jets in TDEs (in analogy with the relation between Type Ib/c supernovae and long-duration gamma-ray bursts). The radio data also provide a new measurement of the circumnuclear density on a sub-parsec scale around an extragalactic supermassive black hole.
118 - N. Rea 2010
We report on a 95ks Chandra observation of the TeV emitting High Mass X-ray Binary LSI +61 303, using the ACIS-S camera in Continuos Clocking mode to search for a possible X-ray pulsar in this system. The observation was performed while the compact o bject was passing from phase 0.94 to 0.98 in its orbit around the Be companion star (hence close to the apastron passage). We did not find any periodic or quasi-periodic signal (at this orbital phase) in a frequency range of 0.005-175 Hz. We derived an average pulsed fraction 3 sigma upper limit for the presence of a periodic signal of ~10% (although this limit is strongly dependent on the frequency and the energy band), the deepest limit ever reached for this object. Furthermore, the source appears highly variable in flux and spectrum even in this very small orbital phase range, in particular we detect two flares, lasting thousands of seconds, with a very hard X-ray spectrum with respect to the average source spectral distribution. The X-ray pulsed fraction limits we derived are lower than the pulsed fraction of any isolated rotational-powered pulsar, in particular having a TeV counterpart. In this scenario most of the X-ray emission of LSI +61 303 should necessarily come from the interwind or inner-pulsar wind zone shock rather than from the magnetosphere of the putative pulsar. Furthermore, we did not find evidence for the previously suggested extended X-ray emission (abridged).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا