First passage properties of asymmetric Levy flights


الملخص بالإنكليزية

Levy Flights are paradigmatic generalised random walk processes, in which the independent stationary increments---the jump lengths---are drawn from an $alpha$-stable jump length distribution with long-tailed, power-law asymptote. As a result, the variance of Levy Flights diverges and the trajectory is characterised by occasional extremely long jumps. Such long jumps significantly decrease the probability to revisit previous points of visitation, rendering Levy Flights efficient search processes in one and two dimensions. To further quantify their precise property as random search strategies we here study the first-passage time properties of Levy Flights in one-dimensional semi-infinite and bounded domains for symmetric and asymmetric jump length distributions. To obtain the full probability density function of first-passage times for these cases we employ two complementary methods. One approach is based on the space-fractional diffusion equation for the probability density function, from which the survival probability is obtained for different values of the stable index $alpha$ and the skewness (asymmetry) parameter $beta$. The other approach is based on the stochastic Langevin equation with $alpha$-stable driving noise. Both methods have their advantages and disadvantages for explicit calculations and numerical evaluation, and the complementary approach involving both methods will be profitable for concrete applications. We also make use of the Skorokhod theorem for processes with independent increments and demonstrate that the numerical results are in good agreement with the analytical expressions for the probability density function of the first-passage times.

تحميل البحث