ﻻ يوجد ملخص باللغة العربية
Globular clusters (GCs) have been posited, alongside dwarf galaxies, as significant contributors to the field stellar population of the Galactic halo. In order to quantify their contribution, we examine the fraction of halo stars formed in stellar clusters in the suite of 25 present-day Milky Way-mass cosmological zoom simulations from the E-MOSAICS project. We find that a median of $2.3$ and $0.3$ per cent of the mass in halo field stars formed in clusters and GCs, defined as clusters more massive than $5times 10^3$ and $10^5~M_{odot}$, respectively, with the $25$-$75$th percentiles spanning $1.9$-$3.0$ and $0.2$-$0.5$ per cent being caused by differences in the assembly histories of the host galaxies. Under the extreme assumption that no stellar cluster survives to the present day, the mass fractions increase to a median of $5.9$ and $1.8$ per cent. These small fractions indicate that the disruption of GCs plays a sub-dominant role in the build-up of the stellar halo. We also determine the contributed halo mass fraction that would present signatures of light-element abundance variations considered to be unique to GCs, and find that clusters and GCs would contribute a median of $1.1$ and $0.2$ per cent, respectively. We estimate the contributed fraction of GC stars to the Milky Way halo, based on recent surveys, and find upper limits of $2$-$5$ per cent (significantly lower than previous estimates), suggesting that models other than those invoking strong mass loss are required to describe the formation of chemically enriched stellar populations in GCs.
Linking globular clusters (GCs) to the assembly of their host galaxies is an overarching goal in GC studies. The inference of tight scaling relations between GC system properties and the mass of both the stellar and dark halo components of their host
The formation histories of globular clusters (GCs) are a key diagnostic for understanding their relation to the evolution of the Universe through cosmic time. We use the suite of 25 cosmological zoom-in simulations of present-day Milky Way-mass galax
Globular clusters (GCs) are bright objects that span a wide range of galactocentric distances, and are thus probes of the structure of dark matter (DM) haloes. In this work, we explore whether the projected radial profiles of GCs can be used to infer
Globular clusters (GCs) are typically old, with most having formed at z >~ 2. This makes understanding their birth environments difficult, as they are typically too distant to observe with sufficient angular resolution to resolve GC birth sites. Usin
It has been a long-standing open question why observed globular cluster (GC) populations of different metallicities differ in their ages and spatial distributions, with metal-poor GCs being the older and radially more extended of the two. We use the