ﻻ يوجد ملخص باللغة العربية
The dynamics of a cosmological (de)confinement phase transition is studied in nearly conformally invariant field theories, where confinement is predominantly spontaneously generated and associated with a light dilaton field. We show how the leading contribution to the transition rate can be computed within the dilaton effective theory. In the context of Composite Higgs theories, we demonstrate that a simple scenario involving two renormalization-group fixed points can make the transition proceed much more rapidly than in the minimal scenario, thereby avoiding excessive dilution of matter abundances generated before the transition. The implications for gravitational wave phenomenology are discussed. In general, we find that more (less) rapid phase transitions are associated with weaker (stronger) gravitational wave signals. The various possible features of the strongly coupled composite Higgs phase transition discussed here can be concretely modeled at weak coupling within the AdS/CFT dual Randall-Sundrum extra-dimensional description, which offers important insights into the nature of the transition and its theoretical control. These aspects will be presented in a companion paper.
Band-inverted electron-hole bilayers support quantum spin Hall insulator and exciton condensate phases. We investigate such a bilayer in an external magnetic field. We show that the interlayer correlations lead to formation of a helical quantum Hall
This work investigates a simple, representative extension of the Standard Model with a real scalar singlet and spontaneous $Z_2$ breaking, which allows for a strongly first-order phase transition, as required by electroweak baryogenesis. We perform a
The QCD phase diagram might exhibit a first order phase transition for large baryochemical potentials. We explore the cosmological implications of such a QCD phase transition in the early universe. We propose that the large baryon-asymmetry is dilute
We investigate the confinement-deconfinement transition at finite temperature in terms of the probability distribution of Polyakov-loop complex-phase via the Jensen-Shannon divergence. The Jensen-Shannon divergence quantifies the difference of two pr
We discuss a general five-dimensional completely anisotropic holographic model with three different spatial scale factors, characterized by a Van der Waals-like phase transition between small and large black holes. A peculiar feature of the model is