ﻻ يوجد ملخص باللغة العربية
Diffraction-free Bessel beams have attracted major interest because of their stability even in regimes of nonlinear propagation and filamentation. However, Kerr nonlinear couplings are known to induce significant longitudinal intensity modulation, detrimental to the generation of uniform plasma or for applications in the processing of transparent materials. These nonlinear instabilities arise from the generation of new spatio-spectral components through an initial stage of continuous spectral broadening followed by four wave mixing. In this paper, we investigate analytically and numerically these processes and show that nonlinear instabilities can be controlled through shaping the spatial spectral phase of the input beam. This opens new routes for suppressing the nonlinear growth of new frequencies and controlling ultrashort pulse propagation in dielectrics.
Several applications, such as optical tweezers and atom guiding, benefit from techniques that allow the engineering of optical fields spatial profiles, in particular their longitudinal intensity patterns. In cylindrical coordinates, methods such as F
Cylindrical vector (CV) beams are a set of transverse spatial modes that exhibit a cylindrically symmetric intensity profile and a variable polarization about the beam axis. They are composed of a non-separable superposition of orbital and spin angul
The dynamical degenerate four-wave mixing is studied analytically in detail. By removing the unessential freedom, we first characterize this system by a lower-dimensional closed subsystem of a deformed Maxwell-Bloch type, involving only three physica
A common issue encountered in photoemission electron sources used in electron accelerators is the transverse inhomogeneity of the laser distribution resulting from the laser-amplification process and often use of frequency up conversion in nonlinear
Bessel beams are plane waves with amplitude profiles described by Bessel functions. They are important because of their property of limited diffraction and their capacity to carry orbital angular momentum. Here we report the creation of a Bessel beam