ﻻ يوجد ملخص باللغة العربية
Most efforts to incorporate computational thinking in K-12 education have been focused on students in their first cycles of school education and have used visual tools, such as Scratch and Alice. Fewer research projects have studied the development of computational thinking in students in their last years of school, who usually have not had early formal preparation to acquire these skills. This study provides evidence of the effectiveness of teaching programming in C++ (a low-level language) to develop computational thinking in high school students in Chile. By applying a test before and after a voluntary C ++ programming workshop, the results show a significant improvement in computational thinking at the end of the workshop. However, we also observed that there was a tendency to drop out of the workshop among students with lower levels of initial computational thinking. Tenth-grade students obtained lower final scores than eleventh and twelfth-grade students. These results indicate that teaching a low-level programming language is useful, but it has high entry-barriers.
To increase public awareness of theoretical materials physics, a small group of high school students is invited to participate actively in a current research projects at Chalmers University of Technology. The Chalmers research group explores methods
Quantum computing is a growing field at the intersection of physics and computer science. The goal of this article is to highlight a successfully trialled quantum computing course for high school students between the ages of 15 and 18 years old. This
Technology is an extremely potent tool that can be leveraged for human development and social good. Owing to the great importance of environment and human psychology in driving human behavior, and the ubiquity of technology in modern life, there is a
Computational Thinking (CT) is still a relatively new term in the lexicon of learning objectives and science standards. There is not yet widespread agreement on the precise definition or implementation of CT, and efforts to assess CT are still maturi
The current study uses a network analysis approach to explore the STEM pathways that students take through their final year of high school in Aotearoa New Zealand. By accessing individual-level microdata from New Zealands Integrated Data Infrastructu